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COMPOSITE ENDPOINTS

Composite endpoints (CEP) in clinical trials:
CEP is defined as a group of endpoints that together form a single
endpoint in a trial (Cannon, 1997).
Those individual endpoints are referred to as components of the CEP.

The HOPE study (Yusuf et al., 2000) investigated the effects of ramipril
on cardiovascular events in high-risk patients with left ventricular
dysfunction.

CEP in HOPE:
myocardial infarction (MI)
stroke
cardiovascular death

Patients who have any of these three events during the follow-up are
considered to have experienced the CEP.
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Our Present Objectives

The focus of this study will be on CEP of time event data.

We used models, asymptotic theory and empirical studies formally
investigate the behaviour of estimation of treatment effects.

Use simulations to study the implications of using CEP in the statistical
power and sample size requirement.

Investigate the validity of some of recommendations of CEP analysis.

Study the effectiveness of alternative design and analysis
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Counting Process Notation: Review of Univariate Failure Times

Let Ti be the time to the CEP with Ni(t) = I(Ti 6 t) and process
historyHi(t) = {Ni(u), Zi, 0 < u < t}.
Let ∆Ni(t) = Ni(t+ ∆t−)−Ni(t−) and dNi(t) = lim∆t↓0 ∆Ni(t).
The hazard function for Ti is defined as

λi(t|Hi(t)) = E (dNi(t)|Hi(t)) = lim
∆t↓0

P (∆Ni(t) = 1|Hi(t))
∆t

where E (·) denotes the expectation operator with respect to the true
process history.
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Counting Process Notation: Review of Univariate Failure Times

Let Ci denote censoring time and Xi = min(Ti, Ci).
Let Yi(t) = I(Xi ≥ t) be the at risk function.

The observed counting process of Ti be N̄i(t) =
∫ t

0
Yi(u)dNi(u)

Let Hi(t) = {Ni(u), Yi(u), Z, 0 < u < t} be the full history.
Let dN̄i(t) = lim∆t↓0 ∆N̄i(t).
The hazard of the observed counting process of Ti is

E (dN̄i(t) = 1|Hi(t)) = Yi(t)λ(t|Zi)dt.
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Cox Model for Time-to-First-Event

The Cox model has the form

λ(t|Zi) = λ0(t)eβZi

where λ0(t) is the baseline hazard function.

The maximum partial likelihood estimation of β is obtained by solving:

U(β) =

n∑
i=1

∫ ∞
0

(
Zi −

S(1)(β, t)

S(0)(β, t)

)
dN̄i(t),

where S(k)(β, t) =
∑n
i=1 Yi(t)Z

k
i exp{βZi}, k = 0, 1.
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Composite Endpoint: Independent Case

Let Ti1 and Ti2 be two independent failure times of subject i.
Tik has hazard functions λk(t|Zi), k = 1, 2.

CEP analysis is based on Ti = min(Ti1, Ti2) and Ni(s) = I(s 6 Ti).
The hazard function of CEP is

E (dNi(s)|Hi(s)) = λ1(t|Zi) + λ2(t|Zi).

If λik(t|Zi) = λ0k(t)eβkZi , k = 1, 2, then CEP has the hazard ratio

λ01(t)eβ1 + λ02(t)eβ2

λ01(t) + λ02(t)
.

Remarks:
1.The proportional hazard assumption holds for CEP, if

(A.1) β1 = β2: the same treatment effect across components, or
(A.2) λ01(t) = λ02(t): the same frequency of occurrence.

2. Otherwise, PH does not hold for CEP analysis.

What are we estimating in this case?
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Composite Endpoint: Events Are Associated

Typically components of CEP are not independent.

Consider a joint survivor function of Ti1 and Ti2 via a Clayton copula:

(F(ti1|Zi;β1)−φ + F(ti2|Zi;β2)−φ − 1)−1/φ.

F(· |· ) is the survivor function.
φ is the association parameter.
Kendall’s τ = φ

2+φ
is a common measure of association for Ti1 and Ti2.

Θ = (β1, β2, φ).
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Illustration

Assume Tk ∼ Exp(λke
βkZ), k = 1, 2

Using the Clayton copula, the joint survivor function of T1 and T2 is

[exp(λ1e
β1Zφt1) + exp(λ2e

β2Zφt2)− 1]−1/φ.

If T = min(T1, T2), P (T > t|Z; Θ) = F(t|Z; Θ) is

[exp(λ1e
β1Zφt) + exp(λ2e

β2Zφt)− 1]−1/φ

with density

f(t|Z; Θ) = −∂F(t|Z; Θ)

∂t
.
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Composite endpoint: Correlated Components

The hazard function of T is

λT (t|Z; Θ) = f(t|Z;Θ)
F(t|Z;Θ) .

The hazard ratio is :

f(t|Z = 1; Θ)

f(t|Z = 0; Θ)
× F(t|Z = 0; Θ)

F(t|Z = 1; Θ)
,

which is NOT a constant even if (A.1) and (A.2) are true.

Remark:
In general, proportional hazards assumption does not hold for CEP, even if
this assumption holds for individual components!
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Non-constant Hazard Ratio: Composite Endpoint
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Misspecified Cox Model: The Limiting Value
In CEP analysis, the solution of β to the partial likelihood score function

U(β) =
n∑
i=1

∫ ∞
0

(
Zi −

S(1)(β, t)

S(0)(β, t)

)
dN̄i(t)

is a consistent estimate of β∗, the solution to limiting score function

U(β∗) =

∫ ∞
0

(
E (

n∑
i=1

ZidN̄i(t))−
E (S(1)(β, t))

E (S(0)(β, t))
E (

n∑
i=1

dN̄i(t))

)
,

where the expectation E is with respect to the true model (e.g. White 1982, Struthers
and Kalbfleisch, 1986).

Remark: β∗ 6= β0.
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Limiting Treatment Effect: The Independent Case

Suppose T1 ⊥ T2|Z, and Tk|Z ∼ Exp(λkeβkZ).
If T = min(T1, T2) and T |Z ∼ Exp(λ1e

β1Z + λ2e
β2Z).

Random censoring: C ⊥ T |Z, P (C > s|Z) = e−ρs.
This independent assumption gives

E (Yi(t)|Zi) = E (Y †i (t)|Zi)E (Y ‡i (t)|Zi)
= P (T > t|Zi)P (C > t|Zi)
= F(t|Zi)G(t).

The expectations in the score equation for β∗, for example E (ZidN̄i(t)), can be
obtained as follows

E (ZidN̄i(t)) = E (ZiYi(t)dNi(t))

= EZi{EYi(t)|Zi
[EdNi(t)|Yi(t),Zi

(ZiYi(t)dNi(t))]}
= P (Zi = 1)f(t|Zi = 1)G(t)dt.

E (dN̄i(t)), E (S(1)(β, t)), and E (S(0))(β, t) can be obtained similarly.

20 / 53



Limiting Treatment Effect: The Independent Case

β∗ solution is:

eβ
∗

=
λ1e

β1 + λ2e
β2

λ1 + λ2

= (
λ1

λ1 + λ2
)eβ1 + (

λ2

λ1 + λ2
)eβ2

The solution β∗ is “weighted” average of β1 and β2.

The “weights” are determined by λ1 and λ2, the frequencies of
occurrence of the two type events.
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Limiting treatment effect: Associated Components

Use Clayton Copula to model the association.

The solution of β∗ is obtained by numerical integration.

Some surprising observations on the relation between β∗ and β1, β2, φ.
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Limiting Value: Dependent Case with Unequal Treatment Effect
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Limiting Value: Dependent Case with Equal Treatment Effect
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Limiting Value: Dependent Case with Equal Treatment Effect

0.2 0.4 0.6 0.8

0
5

10
15

P(T<1)=0.8,   τ = 0.2

 P(T1<T2)

Li
m

iti
ng

  P
er

ce
nt

  R
el

at
iv

e 
 B

ia
s 

 (
%

)

75%
50%

25%
0%

0.2 0.4 0.6 0.8
0

5
10

15

P(T<1)=0.8,   τ = 0.4

 P(T1<T2)

Li
m

iti
ng

  P
er

ce
nt

  R
el

at
iv

e 
 B

ia
s 

 (
%

)
75%
50%

25%
0%

20% administrative censoring
Different random censoring due to withdrawal
Treatment effects: β1 = β2 = log(0.8)

25 / 53



Empirical Study: The Design

Independent components: T1 ∼ Exp(λ1) and T2 ∼ Exp(λ2).
Associated components: τ = 0.2, 0.4.
Consider both administrative censoring and random censoring.
D is number of events required for CEP analysis:

D =
4(z1−α + z1−γ)2

(β∗)2
,

α is type I error for one-sided test;
1− γ is power;
β∗ is the limiting value of treatment effect estimate;
The number of subjects required is obtained based on the expected rate
of CEP events during the follow-up.
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Independent Components With Equal Treatment Effects

P (T1 < T2|Z = 0) = 0.25, β1 = log(0.8), β2 = log(0.8)
% admin. cens % random cens n β∗ mean ESE AVE SE1 AVE SE2 95%CI Power

60 60 3,410 -.223 -.223 .090 .090 .090 95—95 80—80
40 2,265 -.223 -.224 .090 .090 .090 95—95 80—80
20 1,694 -.223 -.224 .090 .090 .090 95—95 80—80
0 1,353 -.223 -.224 .090 .090 .090 95—95 80—80

40 60 2,256 -.223 -.225 .090 .090 .090 95—95 81—81
40 1,494 -.223 -.224 .090 .090 .090 95—95 81—81
20 1,115 -.223 -.226 .090 .090 .090 95—95 81—81
0 889 -.223 -.225 .090 .090 .089 95—95 80—80

20 60 1,678 -.223 -.226 .090 .090 .090 95—95 80—80
40 1,106 -.223 -.227 .089 .090 .090 96—96 81—81
20 822 -.223 -.224 .088 .090 .090 95—95 81—81
0 653 -.223 -.223 .090 .090 .090 95—95 80—80
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Independent Component With Unequal Treatment Effect

P (T1 < T2|Z = 0) = 0.25, β1 = log(0.8), β2 = log(1.0)
% admin cens % random cens n β∗ mean ESE AVE SE1 AVE SE2 95%CI Power

60 60 60,737 -.051 -.052 .020 .021 .021 96—96 82—82
40 40,450 -.051 -.052 .021 .021 .021 95—95 81—81
20 30,317 -.051 -.052 .021 .021 .021 95—95 81—81
0 24,241 -.051 -.052 .021 .021 .021 95—95 82—82

40 60 40,411 -.051 -.052 .021 .021 .021 95—95 80—80
40 26,892 -.051 -.052 .021 .021 .021 95—95 81—81
20 20,143 -.051 -.052 .021 .021 .021 95—95 82—82
0 16,099 -.051 -.052 .021 .021 .021 95—95 80—80

20 60 30,242 -.051 -.052 .021 .021 .021 95—95 80—80
40 20,101 -.051 -.052 .021 .021 .021 95—95 82—82
20 15,041 -.051 -.052 .021 .021 .021 94—94 81—81
0 12,011 -.051 -.052 .021 .021 .021 94—94 81—81
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Associated Component With Equal Treatment Effects

τ = 0.4, P (T1 < T2|Z = 0) = 0.25, β1 = log(0.8), β2 = log(0.8)
% admin. cens % random cens n β∗ mean ESE AVE SE1 AVE SE2 95%CI Power

60 60 3,825 -.210 -.210 .085 .085 .085 96—96 79—79
40 2,611 -.207 -.207 .084 .084 .084 95—95 80—80
20 2,009 -.204 -.204 .086 .082 .082 94—94 79—79
0 1,619 -.203 -.203 .084 .082 .082 95—95 79—79

40 60 2,653 -.205 -.205 .083 .083 .083 94—94 80—80
40 1,825 -.201 -.202 .081 .081 .081 95—95 80—80
20 1,402 -.198 -.199 .079 .080 .080 95—95 81—81
0 1,140 -.196 -.197 .079 .079 .079 95—95 80—80

20 60 2,033 -.202 -.203 .081 .082 .082 95—95 80—80
40 1,393 -.198 -.199 .081 .080 .080 95—95 80—80
20 1,056 -.196 -.197 .079 .079 .079 95—95 81—81
0 857 -.194 -.194 .077 .078 .078 95—95 80—80
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Associated Components With Unequal Treatment Effects

τ = 0.4, P (T1 < T2|Z = 0) = 0.25, β1 = log(0.8), β2 = log(1.0)
% admin. cens % random cens n β∗ mean ESE AVE SE1 AVE SE2 95%CI Power

60 60 42,635 -.061 -.062 .025 .025 .025 96—96 82—82
40 31,360 -.058 -.059 .024 .023 .023 95—95 81—81
20 25,186 -.056 -.057 .023 .023 .023 95—95 80—80
0 20,862 -.055 -.056 .022 .022 .022 95—95 81—81

40 60 32,419 -.057 -.057 .023 .023 .023 95—95 79—79
40 25,866 -.052 -.052 .021 .021 .021 95—95 81—81
20 21,787 -.049 -.049 .020 .020 .020 95—95 81—81
0 18,906 -.047 -.047 .019 .019 .019 95—95 80—80

20 60 29,106 -.052 -.052 .021 .021 .021 95—95 80—80
40 24,662 -.046 -.046 .018 .019 .019 95—95 79—79
20 23,192 -.041 -.042 .016 .016 .016 96—96 81—81
0 21,535 -.038 -.038 .015 .015 .015 96—96 80—80
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Multivariate Time-to-Event Analysis: A Marginal Approach

The Marginal Model of Wei, Lin, and Weissfeld (1989):
Model-free to the dependence structure among the multivariate failure
times, i.e., components in CEP.
Fit ordinary Cox model to each component and estimate the regression
coefficients.
Use robust variance estimate in inference to account for possible
correlation in the data.

Advantages:
Can be easily implemented in R or SAS.
Affords great flexibility in formation of strata and risk sets.
Well-developed variance estimator—Robust Variance Estimator.
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Comparison of Multivariate Analysis and CEP
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CensoringCEP = 1 event
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Comparison of Multivariate Analysis and CEP

Time since randomization

Endpoint 1
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CensoringGlobal = 2 events
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Marginal Cox Model for Multivariate Failure Time

Let λki(t) = λk0(t)eβkZ be the hazard function for kth event.

The kth event-specific score function for βk is

Uk(βk) =

n∑
i=1

∫ ∞
0

(
Zi −

S
(1)
k (βk, t)

S
(0)
k (βk, t)

)
dN̄ik(t).

S
(1)
k (β, u) =

∑n
i=1 Yik(t)Zri exp{βkZi}, r = 0, 1.

N̄i(t) = {N̄ik(t), k = 1, ...,K} is observed multivariate counting
process.

Yik(t) is the at risk indicator function for the kth event of subject i.

Global estimate is weighted average of β̂ks.

34 / 53



Empirical Study II: Associated Components With Equal Treatment Effects

τ = 0.4, P (T1 < T2|Z = 0) = 0.25, β1 = log(0.8), β2 = log(0.8)
%admin. cens % random cens n β∗ mean ESE AVE SE 95%CI Power

60 60 3,387 -.223 -.224 .091 .09 95 80
40 2,247 -.223 -.224 .089 .09 95 81
20 1,679 -.223 -.225 .091 .09 94 81
0 1,340 -.223 -.224 .09 .089 95 80

40 60 2,239 -.223 -.225 .091 .09 96 80
40 1,481 -.223 -.224 .088 .089 95 81
20 1,104 -.223 -.225 .086 .088 96 82
0 879 -.223 -.225 .085 .088 96 82

20 60 1,666 -.223 -.225 .088 .089 96 82
40 1,097 -.223 -.225 .088 .088 95 81
20 815 -.223 -.224 .086 .087 95 83
0 648 -.223 -.223 .086 .086 95 83
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Empirical Study II: Associated Components With Unequal Treatment Effects

τ = 0.4, P (T1 < T2|Z = 0) = 0.25, β1 = log(0.8), β2 = log(1.0)
% admin. cens % random cens n β∗ mean ESE AVE SE 95%CI Power

60 60 35,767 -.067 -.067 .026 .027 95 81
40 24,218 -.066 -.067 .026 .026 96 81
20 18,694 -.065 -.067 .026 .026 95 82
0 14,937 -.065 -.066 .026 .026 94 82

40 60 24,327 -.066 -.066 .026 .026 96 81
40 16,760 -.065 -.066 .025 .026 95 83
20 12,771 -.064 -.065 .025 .025 94 83
0 12,932 -.064 -.065 .025 .025 95 83

20 60 18,514 -.065 -.066 .026 .026 94 82
40 12,367 -.065 -.066 .026 .025 94 83
20 9,115 -.065 -.066 .025 .025 95 84
0 7,182 -.066 -.067 .026 .025 95 84
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Sample Size Requirement: Global vs CEP
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A Real Data Example

An asthma management study—an experimental intervention was
tested to delay the time to exacerbation.

Two endpoints:
Endpoint I: severe exacerbation.
Endpoint II: mild exacerbation.

CEP: time to the first event of endpoint I or II.
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CEP and Its Components

Probability of events: CEP and its components.
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Real Data Analysis: Results

RR 95% p-value p∗

Severe 0.53 (0.285, 0.977) 0.042 0.22
Mild 2.14 (0.624, 7.310) 0.227 0.11

CEP 0.665 (0.388, 1.138) 0.137 0.063

Global (WLW) 0.702 (0.405, 1.219) 0.209
p∗ is the p-value for testing the proportional hazards assumption.
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References to CEP in the Literature

Search Google Scholar:
Search “composite endpoint” and “clinical trial ” —about 2,940 hits since 2000.
Search “composite endpoint” and “clinical trial ” and “cardiovascular”— about 2,320
hits since 2000.

PubMed —about 360 citations in the clinical trial category since 1993.

Web of Science — about 530 citations:
Cardiovascular system and Cardiology (240)
Pharmacology and Pharmacy (170)
Surgery (81)
Hematology (72)

Search “biostatistics” and “composite endpoint” in “statistics” in Google
scholar—about 20 hits.
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Some Key References for Composite Endpoints
1. Some uses of Composite Endpoints in clinical trials:

1992. Braunwald et al. used a CEP in a cardiovascular trial;
1997. Cannon outlined some rationale for CEP.

2. Critical thinking about CEP in medical literature:
2003. Freemantle et al. raised several cautionary notes;
2005. Montori et al., Neaton et al., and Chi further discussed potential pitfalls and
recommendations.

3. Meta-analysis and systematic reviews:
2007-2008. Ignacio Ferreira-Gozalez et al., Bethal et al., Buzney et al., Lim et al., and more.

4. More discussions:
2010. Tomlinson and Detsky; Sheehe.
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Rationale Given for Composite Endpoints

Due to increased event rate, CEP can increase statistical power, reduce
sample size and required follow-up time.
Handles multiplicity problem by using the time-to-first-event.
Allows the measurement of “overall” benefit of the treatment.
Useful when a single primary endpoint is hard to choose.
Can avoid competing risk problem in time-to-event analysis.
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Reported Limitations of Composite Endpoints

Heterogeneity in the treatment effect across components:
Poor power for detecting heterogeneity.
Interpretation of treatment effect can be difficult.

Importance of the components may not be equal at the patient level,
e.g. TIA, stroke, MI, death.
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Recommendations Regarding Composite Endpoints

Individual components should have similar importance to patients;
Individual components should have similar frequency of occurrence.
Treatment should have similar effect on all components.

The last two may not be good recommendations:
Largest bias when components are associated!

Data from all components should be collected until the end of trial.
Individual components should be analyzed separately as the secondary
endpoints.

Allow multivariate analysis and facilitate interpretation.
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Discussion

Cox model for analysis of CEP may not be appropriate: PH does not
hold generally.

Many factors jointly affect the treatment effect estimation:
the dependence structure in the individual components;
stochastic ordering and occurrence frequencies of individual components;
the amount of random censoring;
heterogeneity of the treatment effect across the individual components.

“Equal treatment effect and equal frequency” of individual component
may not be valid recommendation.

The multivariate approach generally outperforms the CEP:
provides the average effect of treatment—facilitates the interpretation;
can achieve higher power and accuracy;
can claim treatment effect on individual components—permit
intent-to-treat analysis.
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