An Information Criterion for Marginal Structural Models

Robert W. Platt

Department of Epidemiology, Biostatistics, and Occupational Health and of Pediatrics McGill University

March 11, 2011

Platt - CANNeCTIN

Marginal Structural Models

Model marginal expectation as a function of time-varying exposure as a function of pre-defined time-varying treatment plans

- $E[Y_{\overline{X(t)}}(t)] = f(\overline{X(t)})$
- $Y_{\overline{X(t)}}(t)$ potential outcome at time t
- $\overline{X(t)}$ history of exposure X to time t
- Let Z denote a vector of covariates; Z(t) represents Z at time t, $\overline{Z(t)}$ history to t.
- Interpretation: expected Y(t) if all subjects followed $\overline{X(t)}$.

Marginal Structural Models - Simple Example

Model marginal expectation as a function of time-varying exposure as a function of pre-defined time-varying treatment plans

- X_0 , X_1 two binary treatments
- Four possible treatment histories: (0,0), (1,0), (0,1), (1,1)
- an MSM models expected (average) outcome for each possible treatment history if ALL subjects were to follow that history
- e.g., E[Y_(1,1)] is the average outcome if ALL subjects (possibly contrary to fact) were to receive X₀ = 1, X₁ = 1.

	• •	00	

Assumptions

No unmeasured confounding

$$Y_{\overline{X}(t)}(t) \coprod X(t) | \overline{X(t-1)}, \overline{Z(t)}$$
(1)

- Treatment at *t* is independent of potential outcomes given history of treatment and covariates;
- each treatment change is randomized given history
- Experimental treatment assumption $P(\overline{X})$ is nonzero for all possible treatment histories.
- Every possible treatment history must have positive probability

Background ○○○●○	Fitting the Outcome Model	An Information Criterion	Simulation Study	Examples	Conclusions

Estimation

• Robins 1998, 1999, Hernán and Robins 2006: $E[Y_{\overline{X(t)}}(t)]$ is the unique solution to the estimating equation

$$E[q(\overline{x(t)})(Y - c(\overline{x(t)}))/w(t)]$$
(2)

where

$$w(t) = \prod_{i=0}^{t} P(X(i) = x(i) | \overline{X(i-1)}, \overline{Z(i)})$$
(3)

ie inverse probability of treatment received given history of treatment and covariates, and q is any function.

- Requires model for w(t).
 - Robins 1998: \hat{w} must converge to w at rate $n^{1/4}$.

Background ○○○○●	Fitting the Outcome Model	An Information Criterion	Simulation Study	Examples 0000 00	Conclusions

Previous Work

Specification of model for w

- Must include confounders
- May include predictors of outcome
- Should not include predictors of treatment (instruments)
- Should account for time-modified confounders
- What about the outcome model?

Background	Fitting the Outcome Model ●○	An Information Criterio	n Simulation Study	Examples	Conclusions

Outcome Model

Specification of model for Y

- Typically some function of the exposure
- Most HIV examples have used cum(X) total amount of treatment received
- Has led to misconception that this functional form is part of the MSM!
- Functional form should reflect causal question under study
- What if uncertainty exists re causal question?

Outcome Model

- Could try multiple models
- How to evaluate/compare?
- Adjusted *R*²?
- Some kind of information criterion?

Simple case: two time-point MSM

Let

- \mathcal{X} denote a set of treatments that can be applied at any point in time, x_1, x_2 be a sequence of treatments
- Y_{x_1,x_2} be a counterfactual outcome corresponding to a sequence of treatments, and
- S = Y_{x1,x2}, (x1,x2) ∈ X² be the set of counterfactual outcomes corresponding to all possible treatment sequences.
- Let X(t) denote the observed treatment at time t,
- $\overline{L}(t)$ denote the history of all covariates up to time t,
- V ⊂ L(1) be some baseline covariates upon we which to condition.

Background	Fitting the Outcome Model	An Information Criterion ○●○○	Simulation Study	Examples 0000 00	Conclusions

Two time-point MSM

- Interested in estimating the conditional expectation of the counterfactual given V: E[Y_{x1,x2}|V].
- If for each subject, we observed all counterfactual outcomes, S, one could fit a model $m(x_1, x_2, V)$ of $E[Y_{x_1, x_2}|V]$ directly
- For example, $m(x_1, x_2, V) = \beta_0 + \beta_1 x_1 + \beta_2 x_2$.
- Given a set of competing models that have been fit to the data, $\hat{m}_i, 1...I$, can we develop an information criterion?

Background	Fitting the Outcome Model	An Information Criterion ○○●○	Simulation Study	Examples 0000 00	Conclusions
		QIC			

We assume that the weight model w is correctly specified, and that it is constant across candidate m_i . In the full (partially unobserved) data, we propose

$$QIC(\hat{m}) = 2p - \frac{1}{n} \sum_{i=1}^{n} \sum_{x_1, x_2 \in \mathcal{X}^2} (Y_{(x_1, x_2), i} - \hat{m}(x_1, x_2, V_i))^2,$$

where p is the number of free parameters in the model. With only the observed data, we choose the model that maximizes the inverse-probability weighted quasi-likelihood information criterion:

 $QIC_W(\hat{m})$

$$2p - \frac{1}{n} \sum_{i=1}^{n} \frac{(Y_i - \hat{m}(X(1)_i, X(2)_i, V_i))^2}{P(X_i(2) = x_i(2) | \bar{L}_i(2), X_i(1)) P(X_i(1) = x_i(1) | L_i(1))} (4)$$

Platt - CANNeCTIN

Background	Fitting the Outcome Model	An Information Criterion ○○○●	Simulation Study	Examples 0000 00	Conclusions
	C				

QIC- equivalence

It is straightforward to show that

$$QIC_W(\hat{m}) = QIC(\hat{m})$$

in the two time-point setting. This extends easily to more complicated models.

		00	

Simulations - Design

- 4 time points $i = 1, \ldots, 4$
- Treatment T_i, confounder L_i generated as:
 - $L_1 N(10, 1)$
 - $T_i Bin(p_i)$ where p_i a function of L_i and $T_{I=1}$
- Y Normal, function of T_i .

Simulations - Design

- 5 scenarios (others under consideration)
- 3 sample sizes
- Fit "full", "null", and "reduced" model (including only T_1 and T_2)

Simulations - Results

- Simpler models: *QIC_w* selects correct or over-fit model, adj. R^2 under-fit
- More complex models: *QIC_w* selects correct model, adj. *R*² under-fit
 - When all coefficients nonzero, QIC_w selects correct model 85-100% of the time
 - Adj. R^2 selects reduced model most of the time
- Performance improves with sample size.

Background	Fitting the Outcome Model	An Information Criterion	Simulation Study	Examples ●○○○ ○○	Conclusions	
PROBIT						

- Breastfeeding promotion intervention
- 17 045 subjects
- Followed at 0, 1, 2, 3, 6, 9, 12 months
- All mothers intended to breastfeed
- We considered models for weight at 12 mos as a function of breastfeeding duration

Background	Fitting the Outcome Model	An Information Criterion	Simulation Study	Examples ○●○○ ○○	Conclusions

PROBIT - MSMs

Considered four models (M =months breastfed)

• Linear
$$E[Y_{12}] = \beta_0 + \beta_1 * M$$

- Quadratic $E[Y_{12}] = \beta_0 + \beta_1 * M + \beta_2 M^2$
- Cubic $E[Y_{12}] = \beta_0 + \beta_1 * M + \beta_2 M^2 + \beta_3 M^3$
- "saturated" model with dummy variable for each time point

Results

Figure: Plot of weight as function of months BF; shaded area confidence band for saturated model

Platt - CANNeCTIN

Background	Fitting the Outcome Model $\circ \circ$	An Information Criterion	Simulation Study	Examples ○○○● ○○	Conclusions

Results II

Model	No. parms	QIC_w
Saturated	7	16,776
Linear exposure	2	16,784
Quadratic exposure	3	16,786
Cubic exposure	4	16,775

CD4 and HIV treatment

- Cole et al (AJE 2004) fit an MSM to CD4 count as a function of HAART treatment over time.
- Selected a model with a piecewise linear function
- linear from 0-1 year, and linear after 1 year.
- Is this best model?

00000	00	0000		0000 0•	0000	
Deculto						

Results

Model	No. parms	QIC_w
1. Intercept	1	931.77
2. Intercept and time a	5	496.94
3. Model $2 + \text{linear exposure}$	6	482.11
4. Model $2 + curvilinear exposure$	7	481.57
5. Model $2 + 2$ -part linear exposure	7	480.92
6. Model 2 + per visit (Saturated model)	25	516.58

	Conclusions		

- QIC appears to provide useful information for model selection
- Simulations: selects richer model
- Examples: chooses interesting models/provides insight

	Limitations		

- Proof (and simulations) assume weight model correctly specified
- No joint modeling/information criterion
- Assumes IPTW fitting of models

	Future Work	(

- Joint modeling of weight and outcome: optimization criteria?
- Targeted Maximum Likelihood?
- Machine-learning orientation?

Thanks!					

- FRSQ
- NSERC
- NIH/NICHD
- American Chemistry Council
- M. Alan Brookhart, Enrique Schisterman, Daniel Westreich, Steve Cole