
Maria Esther Perez Trejo

Department of Epidemiology, Biostatistics and Occupational Health

McGill University

April 8th 2011



 Background

- Cluster RCT: advantages/disadvantages.

- Double clustering situation.

- Study that illustrates double clustering: PROBIT.

- Strategies to minimize double clustering

 Modeling double clustering

- Why not traditional cluster RCT analysis tools?

- Bayesian models with missing data for continuous outcomes.

 Analysis of PROBIT data

 Simulation study

- MCMC approach WinBUGS-R

- Simulation scenarios 

- Simulation results

 Conclusions and Future work



 Advantages of cluster RCTs

- Benefits inherent to randomized treatment allocation while reducing potential 

contamination of treatment effects due to existence of subjects in close proximity.

- More convenient than individual RCT when group dynamics make more feasible to 

change practices/behaviors within a group than among individuals.

 Disadvantages of cluster RCTs

- Reduced statistical power for treatment effect estimation due to within cluster 

correlation of outcomes.

* within cluster correlation measured through the ICC.

* this problem can be addressed at the design stage by increasing the sample size 

according to the magnitude of ICC.

- When the number of clusters is small, imbalance can occurr in potential confounders 

that vary across clusters.

* problem addressed through statistical adjustment.



 When the measurement of the outcome is naturally clustered, and that 

clustering occurs within the same groups used as units for cluster 

randomization.

 A cluster is now defined as the group of subjects whose outcome is 

measured by the same observer.

 Difference in treatment effects due to cluster measurement cannot be 

separated from differences caused by inherent clustering.

 Effect: to increase degree of association between individuals within the 
same cluster → decrease detection rate of treatment effects.

 It cannot be addressed at a design level, neither through statistical 

adjustment.



 Units of randomization: hospitals.

 17,046 children originally randomized among 31 hospitals 
in Belarus.

 Treatment: breastfeeding promotion intervention/standard 
care.

 Outcomes of interest: body mass index (BMI), triceps 
skinfold thickness (TST), verbal IQ (IQ).

 A different observer/equipment per site took these 
measurements ⇒ double clustering is present!



BMI: digital read out weight scale the 

least susceptible to between hospitals 
differences ⇒ BMI does not vary 

considerably by cluster.

TST and IQ: ranges are too variable 

to be explained by true geographical 
differences ⇒ differences likely to 

reflect systematic measurement 

differences among the 31 clusters.

The ICC’s reflect this situation:

• ICC for BMI = 0.03

• ICC for TST = 0.18

• ICC for IQ    = 0.31



 To randomly allocate observers across clusters. 

* It might not be feasible due to geographical limitations.

 To use a single individual to assess the outcome in all clusters → 
audited measures in each cluster.

* Complicated by large number of participants or geographical 
dispersion.

**Statistical model of this strategy presented here!

 To standardize measurement methods/training of observers.

 Pilot study to identify difficulties in outcome measurements.

 Why modeling double clustering is important?

- It is very likely to occurr in cluster RCTs.

- It could partially explain some negative/inaccurate results of some 
cluster RCTs carried out in the past.



 Traditional modeling for cluster RCTs continuous outcomes

Yij
(1) = β0 + β1Ti + bi + εij

(1) (1)

• Yij
(1) = outcome for the jth subject in the ith cluster.

• Ti = treatment allocated to cluster i (T = 1 for intervention, T = 0 for control).

• bi ~ N(0,σb) and εij
(1) ~ N(0, σ1) are the error terms at cluster and individual 

level, respectively.

• Independence of errors assumed.

 ICC given by

 Usual methodology: linear/generalized mixed models.

-clustered accounted for through random intercepts estimation.

- Individual observations within each cluster considered as repeated measures.



 However, in presence of double clustering the model becomes

Yij
(2) = β0 + β1Ti + bi + di + εij

(2) (2)

• di ~ N(0,σd) is the random effect due to measurement error (cluster 

measurement). Independent of random terms bi and εij
(2) ~ N(0, σ2). 

 ICC given by

 If linear/generalized models are used to estimate treatment effects 

under model (2)

- estimates will be inaccurate due to increased total variance.

- not possible to separate variance due to clustering (σb) from variance 

due to measurement error (σd).



 Observed data under double clustering come from model (2).

 ni individuals per cluster ni ≤ Si (Si denotes cluster size) are measured by a 
single auditor for all clusters.

 Audited outcomes come from model (1)  (σd = 0).

⇒

 Bayesian inference in presence of missing data.

 ni individuals per cluster have both Yij
(1) (audited) and Yij

(2) outcomes.

 Si - ni subjects per cluster have only Yij
(2) outcome; for these individuals 

Yij
(1) is a missing observation.

 Model fit in WinBUGS

 2 separated error terms for models (1) and (2)

- pilot simulation study (in R-WinBUGS) produced more accurate cluster 
and error term variances than under a single error term scenario.

- feasible this situation to happen in real life.



 MCMC approach to estimate parameters of interest 
from a suitable posterior distribution.

 Define vector of parameters

θ = (β0, β1, σ1, σ2, σb, σd, bi, di, i = 1,…,nc where nc is the 
number of clusters).

 Main interest lies in estimating the treatment effect (β1) 
and variances for cluster and measurement error (σb

and σd, respectively).



 Assume all clusters have the same size S.

 Vector Yi of (2 S) entries of observations can be written as:

Yi = [Yi1
(1), Yi2

(1),…,Yis
(1), Yi1

(2), Yi2
(2),…,Yis

(2)]T

where terms Yij
(2) are the S observed outcomes from model (2) -double 

clustering, and terms Yij
(1) are the ni observed (audited) outcomes and 

the S- ni missing observations from model (1).

 It is assumed that 

Yi ~ MVN(2s 1)(μi,Σi)

where

μi = [β0 + β1Ti ,…, β0 + β1Ti ] T, 

and Σi is the (2s 2s) matrix for the variance-covariance structure given 
by



 S (2 2)-matrices Di showing the covariance structure between outcomes of the 

same subject under both models. 

 Two observations of the same subject 

Yij = [Yij
(1), Yij

(2)] T

assumed bivariate normal with vector mean 

μ =[ β0 + β1Ti , β0 + β1Ti ]T

and variance-covariance structure

𝐷𝑖 = 𝐸   𝒀𝑖𝑗 − 𝛍 
T
 𝒀𝑖𝑗 − 𝛍  =   

σ𝑏
2 + σ𝑑

2 + σ1
2 σ𝑏

2

σ𝑏
2 σ𝑏

2 + σ2
2  



 The (2 2) matrices Pi out of the diagonal show the 

covariance structure between outcomes of two different 

individuals.

 Pi matrices given by

 Joint pdf for the observations of a cluster is

𝑃𝑖 = 𝐸   𝒀𝑖𝑗 − 𝛍 
T
 𝒀𝑖𝑗 +1 − 𝛍  =   

σ𝑏
2 + σ𝑑

2 σ𝑏
2

σ𝑏
2 σ𝑏

2  

𝑝 𝒀𝒊 𝜽 =
1

(2𝜋)2𝑠/2|𝚺𝑖|
1/2

exp −
1

2
(𝒀𝑖 − 𝛍𝑖)

𝑇𝚺𝑖(𝒀𝑖 − 𝛍𝑖)  



 Alternative expression of observations in cluster i in terms of the 

vectors of observed outcomes Yiobs, and missing outcomes Yimis,      

Yi = [Yiobs, Yimis]
.

 Vector containing the (2S nc) observations from the nc clusters is    

Y = (Y1,…,Ync) = (Yobs, Ymis), where Yobs = (Y1obs,…,Yncobs), and   

Ymis = (Y1mis,…,Yncmis).

 Independence between observations from different clusters is 

assumed. Therefore, joint distribution of Y given parameters θ is

𝑝 𝒀𝑜𝑏𝑠 ,𝒀𝑚𝑖𝑠  𝛉 =  
1

(2𝜋)2𝑠/2|𝚺𝑖|
1/2

𝑒𝑥𝑝  −
1

2
(𝒀𝑖 − 𝛍𝑖)

𝑇𝚺𝑖(𝒀𝑖 − 𝛍𝑖) 

𝑛𝑐

𝑖=1

 (3)



 Intercept and treatment effects: β0 and β1~N(0,1e-06)

 Diffuse priors for variation parameters:

1/σb
2, 1/σd

2, 1/σ1
2, 1/σ2

2 ~ Gamma(0.001,0.001)

 For cluster and measurement error terms:

bi|σb~ N(0,σb) and di|σd~ N(0,σd) for i =1,…,nc

 Independence between clusters is assumed, then

 Joint priors for cluster and measurement error terms:

p(b1,..,bnc,σb) = p(b1,..,bnc| σb)p(σb)  and   p(d1,..,dnc,σd) = p(d1,..,dnc| σd) p(σd)

 Joint prior for θ

p(θ) = p(β0) p(β1) p(σ1) p(σ2) p(b1,..,bnc,σb) p(d1,..,dnc,σd)        (4)

𝑝 𝑏1 , … , 𝑏𝑛𝑐  𝜎𝑏 =  𝑝(𝑏𝑖|𝜎𝑏)

𝑛𝑐

𝑖=1

   and   𝑝 𝑑1 , … , 𝑑 𝜎𝑏 =  𝑝(𝑑𝑖|𝜎𝑏)

𝑛𝑐

𝑖=1

 



 Since missing observations are unknown, multiple imputation is 
carried out → MCMC sampling from the posterior distribution of θ
and Ymis is conducted.

 MCMC sample from

where p(Yobs,Ymis|θ) given by equation (3) and p(θ) given by 
equation (4), and

 A GS-MH algorithm to generate a MCMC for the parameters of 
interest only requires to know that the posterior distribution is

p(Ymis,θ|Yobs) ∝ p(Yobs,Ymis|θ) p(θ)                            (5)

𝑝 𝒀𝑚𝑖𝑠 , 𝛉|𝒀𝑜𝑏𝑠  =
𝑝 𝒀𝑜𝑏𝑠 , 𝒀𝑚𝑖𝑠  𝛉 𝑝(𝛉)

𝑝(𝒀𝑜𝑏𝑠 )
 

𝑝 𝒀𝑜𝑏𝑠  =   𝑝(𝒀𝑜𝑏𝑠 ,
𝑌𝑚𝑖𝑠𝜃

𝒀𝑚𝑖𝑠  𝛉 𝑝(𝛉)𝑑𝒀mis 𝑑𝛉 



 Without accounting for double clustering

 Accounting for double clustering

 Treatment effect shifted towards the null. 95% CI length practically unchanged.

 ICC = 0.22, and ICCdc = 0.34 → about half of the ICC is due to double 

clustering variability.

Parameter Posterior mean Posterior sd Posterior median 95% credible interval 

β0 106.4 2.4 106 (102.9, 111.1) 
β 1 -2.15 2.5 -1.76 (-6.8, 2.51) 
σ1

2
 199.1 21.7 198.3 (161.5, 245.3) 

σ 2
2
 183.5 2.2 183.6 (179.3, 188) 

σ b
2
 54.9 18.8 51.5 (28.7, 100.5) 

σ d
2
 42.4 16.8 39.7 (19.03, 86.6) 

 

Parameter Posterior mean Posterior sd Posterior median 95% credible interval 

β0 107.4 2.3 107.5 (102.1, 112.5) 
β 1 -5.48 2.7 -5.16 (-11.3, -1.24) 
σ1

2
 183.4 2.2 183.4 (178.9, 187.6) 

σ 2
2
 97.8 29.2 92.7 (54.6, 168.4) 

σ b
2
 2.81 4.4 0.38 (0.002, 14.6) 

 



 MCMC sampling from posterior distribution (5) → for β0, β1, σ1
2, σ2

2, σb
2, σd

2: estimate 

posterior mean, variance and 95% credibility interval.

 Simulation setting:

- 100 replications of each scenario.

- β0 = 100, β1 = 5 (treatment effect), σb=σ1=σ2=1.

- two scenarios for severity of double clustering: σd= 5 (moderate) and σd= 10 (strong).

-10 scenarios for number of audited data: 1%, 5%, 10%, 25%, 40%, 50%, 65%, 75%, 85% 

and 95% of audited observations per cluster.

- For each (% audited data, σd) combination posterior summary statistics obtained using 

only observed data in presence of double clustering from equation (2) → naive approach.

-For each (% audited data, σd) scenario quality of estimator for each parameter evaluated 

through: bias, variance, MSE, relative efficiency (with respect to estimator under naive 

approach), coverage of credibility interval.



% of audited data σd =5 naive σd =5 σd =10 naive σd =10 σd =5 naive σd =5 σd =10 naive σd =10

1% 0.175 0.048 0.179 0.898 2.604 2.773 6.930 10.704

5% 0.208 0.317 0.156 0.703 1.306 2.772 1.785 10.358

10% 0.019 0.031 0.145 0.620 0.812 2.781 1.146 9.972

25% 0.054 0.072 0.088 0.094 0.423 2.666 0.466 9.757

40% 0.022 0.143 0.074 0.698 0.317 2.722 0.349 10.444

50% 0.011 0.278 0.067 0.118 0.310 2.861 0.310 10.168

65% 0.066 0.414 0.036 0.909 0.247 2.933 0.237 10.256

75% 0.096 0.098 0.007 0.390 0.238 2.736 0.218 9.423

85% 0.059 0.162 0.008 0.743 0.189 2.759 0.189 10.276

95% 0.001 0.438 0.038 1.287 0.217 2.940 0.232 11.634

Bias MSE
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% of audited data σd =5 σd =10 σd =5 naive σd =5 σd =10 naive σd =10

1% 0.939 0.647 92% 98% 96% 93%

5% 0.471 0.172 91% 95% 95% 95%

10% 0.292 0.115 92% 96% 96% 95%

25% 0.159 0.048 94% 97% 92% 99%

40% 0.117 0.033 91% 97% 96% 94%

50% 0.108 0.030 97% 99% 96% 95%

65% 0.084 0.023 95% 94% 93% 90%

75% 0.087 0.023 93% 94% 94% 94%

85% 0.068 0.018 93% 97% 91% 97%

95% 0.074 0.020 94% 93% 97% 88%

Relative efficiency Coverage of CI



 Bias

- It tends to decrease as the % audited data increases for both scenarios of double 

clustering severity, although trend is not constant.

- Degree of double cluster severity does not have impact on bias for estimated 

treatment effect (crossing of values of bias for some % audited data levels).

- Bias when naive approach is used is considerably larger than under missing data 

approach for the σd= 10 case than for the σd= 5 scenario.

 MSE

- Clear and steady decreasing trend as the % audited data increases for both scenarios 

of double cluster severity.

- Values of MSE very similar at each % audited data level for both double clustering 

scenarios.

- MSE under naive approach considerably larger when double clustering is severe than 

for a moderate level.



 Relative efficiency

- Steady decreasing trend as the % audited data increases.

- Relative efficiency larger for moderate double clustering 

severity than under strong double clustering.

 Coverage of CI

- Very close to theoretical level of 95% for all combinations of 

scenarios of double cluster severity and % audited data.

- Also very close to theoretical level for both naive cases.
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% of audited data σd =5 naive σd =5 σd =10 naive σd =10 σd =5 naive σd =5 σd =10 naive σd =10

1% 5.060 15.393 4.627 77.439 111.94 359.85 1509.82 6555.9

5% 1.070 16.064 4.521 77.159 52.81 370.08 769.97 6567.9

10% 1.774 16.378 2.220 79.628 53.21 382.19 780.56 6914.3

25% 0.105 16.538 4.238 79.151 41.83 381.15 660.01 6895.0

40% 0.351 15.941 6.562 78.680 44.14 368.43 734.49 6797.6

50% 0.585 16.606 10.482 78.273 48.52 384.39 849.66 6720.8

65% 0.406 15.914 3.691 75.784 45.69 368.70 661.10 6410.3

75% 0.382 17.122 1.305 79.914 40.79 392.72 581.13 6804.0

85% 0.263 15.698 4.664 73.380 39.35 372.46 634.23 6058.4

95% 0.242 15.694 6.897 78.433 44.14 290.38 734.02 6786.7

Bias MSE



% of audited data σd =5 σd =10 σd =5 naive σd =5 σd =10 naive σd =10

1% 0.311 0.230 92% 74% 98% 35%

5% 0.143 0.117 97% 76% 99% 42%

10% 0.139 0.113 97% 77% 96% 35%

25% 0.110 0.096 97% 71% 97% 40%

40% 0.120 0.108 95% 74% 98% 37%

50% 0.126 0.126 98% 70% 93% 41%

65% 0.124 0.103 97% 71% 94% 42%

75% 0.104 0.085 94% 67% 98% 31%

85% 0.106 0.105 90% 72% 94% 44%

95% 0.152 0.108 99% 77% 95% 40%

Relative efficiency Coverage of CI
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 Bias

- Decreasing trend as % audited data increases, when double cluster severity is 
moderate; however behavior is irregular as a function of % audited data for severe 
double clustering scenario.

- For all % audited data, bias is smaller when double clustering is moderate than 
when it is severe.

- Bias under naive approach remarkably higher than under presence of audited data, 
with difference being considerably more pronounced when double clustering is 
severe.

 MSE

- Decreasing trend for small %’s audited data (up to 25%), then it fluctuates around 
43 for scenario of moderate double clustering.

- MSE for case of severe double clustering higher than when double clustering is 
moderate, for all cases of % audited data, although it does not follow any trend as 
function of % audited data.

- MSE under naive approach considerably higher than when using audited data, with 
difference more pronounced when double clustering is severe.



 Relative efficiency

- It does not show a considerable variability as % audited data 
changes, for both double cluster severity scenarios.

- Very similar for both double clustering scenarios, for all levels of 
% audited data (around 0.15).

 Coverage of CI

- Very close to theoretical level for all (% audited data, double 
clustering severity) scenarios.

- It decreases considerably with respect to theoretical level when 
naive approach is used  with levels around 75% for moderate double 
cluster severity, and around 40% for stronger double clustering 
scenario.



 Results for intercept very similar to those for treatment effect.

 Results for cluster variance (σ2
b) similar to results for measurement error 

variance (σ2
d).

 Individual variance under no double clustering (σ2
1): 

-Bias very similar for both double cluster severity scenarios, without  a 

decreasing trend as % audited data increases; however, bias under naive 

approach is smaller in both cases.

- MSE shows decreasing trend as % audited data increases for both double 

clustering severity scenarios (MSE very similar for both σd cases and 25% and 

up audited data), and in both cases MSE under naive approach is smaller.

- Coverage levels very close to theoretical level (95%) for all combinations of 

(% audited data, double clustering severity), as well as under naive approach.



 Individual variance under double clustering (σ2
2):

- Bias for both double clustering severity scenarios shows irregular 
trend as % audited data changes; bias similar in both cases and they 
do not differ considerably from those under naive approach.

- MSE very constant (around 5) for all (% audited data, double 
clustering severity) combinations, as well as for naive approach.

- Coverage levels very close to theoretical level of 95% for all all
(% audited data, double clustering severity) combinations and naive 
case.

 Individual-level variances are less susceptible to double clustering 
than cluster and measurement error variances.



 Estimated treatment effect is affected negatively by the presence 
of double clustering. The accuracy and precision of the estimated 
effect improve when at least 5% of the outcomes are audited by a 
single observer.

 Estimated values of both variability paramenters (cluster and 
measurment error) are considerably affected in their accuracy 
and precision when no data are audited. These parameters are 
more sensitive to an increase of the double cluster severity than 
the treatment effect.

 Inclusion and modeling of data audited by a single observer in all 
clusters successfully account for double clustering, therefore 
improving the accuracy and precision of estimated treatment 
effects as well as of cluster and measurement error variance 
parameters.
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The context: Marginal structural model (MSM)

• The methodological context is that we are interested in obtaining
the marginal effect of treatment on an outcome when

1. A set of covariates, X , confound the treatment, A, and the
outcome, Y and

2. Not all treatments are observable (i.e. there is a censoring
mechanism).
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Simplifying the MSM context

• We will consider the point-treatment context where at least one
of the confounders is measured with error.

• It is a first step towards
• Understanding the inherent complexities of the problem,
• Identifying possible methodologies for unbiased estimation in the

presence of measurement error, and
• Extending the methods to more complex systems.
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Point-treatment using counterfactuals

Under the counterfactual framework,
• Let a be a possible value of A, and
• Ya denote the potential response we would expect to observe if

the subject followed treatment a.
• Ya=1 denote a subject’s outcome if treated, and
• Ya=0 if untreated.

• For a continuous outcome, we want to estimate the marginal
effect of treatment

• We use the marginal structural model E [Ya] = g(A : β) where β
parameterizes the model.

• For the point treatment scenario we consider E [Ya] = β0 + β1A.
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Point-treatment details

• Under the assumptions of consistency, exchangeability (Robins
1999), positivity (Hernan and Robins 2006), and time ordering
where exposure precedes outcome (Mortimer 2005), we can
obtain unbiased estimates of β.

• The estimates are obtained using a weighted M-estimator

n∑
i=1

[W−1
i ]T(Yi − β0 − β1Ai )

• Through the creation of a psuedo-population, the weighting
breaks the confounding relationships between the confounding
prognostic factors and the treatment.

• Ya
∐

A|X
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Point-treatment stabilized weight

For the point-treatment scenario with censored treatments (Hernan et
al. 2001), the stabilized weight for the i th individual is

swi =
p(Ai = ai |Ci = 0)p(Ci = 0)

p(Ai = ai |Ci = 0,Xi = xi )p(Ci = 0|Xi = xi )
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The focus of the investigation: The denominator

The key problem lies in the denominator,

p(Ai = ai |Ci = 0,Xi = xi )p(Ci = 0|Xi = xi )

• If a confounder X is unobservable but a proxy is used X ∗ then
we are using

p(Ai = ai |Ci = 0,X ∗i = x∗i )p(Ci = 0|X ∗i = x∗i )
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Measurement error

Two general types
• Classical measurement error models

• The conditional distribution of X∗ given X is modelled
• Regression calibration models

• The conditional distribution of X given X∗ is modelled
• Berkson error models
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Focus: Classical additive error model

The classical unbiased additive error model for the i th subjects is

X ∗i = Xi + ε

where
• Xi is the unobserved variable,
• E(ε|Xi ) = 0, and
• Var(ε|Xi ) = τ2.
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Implications of measurement error

• Attenuation occurs in linear regression models when covariates
are mismeasured.

• Gustafson shows that attenuation can be expected for
parameters associated with mismeasured covariates in logistic
regression.

• For both ordinary least squares and logistic regression
attenuation is enhanced as the correlation amongst covariates
strengthens (Gustafson 2004).
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Effect of using proxy confounders

There are four effects of using proxy confounders in the denominator
of the MSM weights on the parameter of interest, β1:

1. Little effect,
2. Attenuation,
3. Augmentation, and
4. Sign reversal.
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Little effect
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Attenuation
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Augmentation
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Sign reversal
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Model of interest

• The portion of the stabilized weight which is of primary interest is
the joint distribution found in the denominator of the stabilized
weight:

p(Ai = ai |Ci = 0,Xi = xi )p(Ci = 0|Xi = xi )

• We consider the situation where confounders are measured with
error,

p(Ai = ai |Ci = 0,X ∗i = x∗i ,Z = zi )p(Ci = 0|X ∗i = x∗i ,Z = zi )

where Z denotes observed and correctly measured confounders.
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The joint distribution for the model of interest

The joint distribution of the model of interest is

p(A,C,X ∗,X |Z = zi ; θ)

where
• A denotes the treatment,
• C is binary and indicates censoring (C = 0, observed),
• X ∗ is the measured confounders,
• X is the unmeasured confounders, and
• Z are other perfectly measured covariates.
• θ is the vector of parameters.
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Log-likelihood

The associated complete data log-likelihood for the model of interest
is

`c =
n∑

i=1

log p(Ai |c = 0, xi , zi ; θ
A) + log p(Ci |xi , zi ; θ

C)

+ log p(X ∗i |xi , zi ; θ
M) + log p(Xi |zi ; θ

X )

where
• θ = {θA, θC , θM , θX},
• θA parameterizes the treatment model,
• θC parameterizes the censoring mechanism,
• θM parameterizes the measurement error model,
• θX parameterizes the unobserved confounder(s) model.
• Assuming all models are uniquely parameterized.



Background Model The EM algorithm SCEM Simulation study Conclusions

Observed likelihood

Since X is unobserved, we should use the observed likelihood,

L(θ) =
n∏

i=1

∫
X

p(Ai ,Ci ,X ∗i ,Xi |Z = zi ; θ)dνxi

=
n∏

i=1

∫
X
Lci (θ)dνxi

Using the observed likelihood can be more complicated than using
the complete-data likelihood, so we would like to use the
complete-data likelihood instead.
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The approach

We use the EM algorithm, a general iterative algorithm for
maximum-likelihood estimation in incomplete-data situations.

We can view measurement error as a type of missing data problem.
• The X are unobservable - missing.
• We observe X ∗ and we have or assume a functional relationship

between X ∗ and X .
• We assume that all observations are mismeasured under the

same measurement error model.
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Basic idea of the EM algorithm

Objective
Iterative procedure to obtain maximum likelihood parameters when
maximum likelihood estimation would be straightforward, but there is
the additional complexity of incomplete information.

Principle
The EM algorithm is less an algorithm and more a two-step general
principle.

1. E-step: Take the conditional expectation of the complete
likelihood, `c(θ|·), given the observed data.

2. M-step: Maximize the conditional expectation with respect to the
parameter.
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EM Algorithm: The procedure

• Unobservable complete-data log likelihood is replaced by the
conditional expectation of the complete-data log likelihood given
the observed data and current parameter estimates

• For the (t + 1)th iteration the E-step is

Q(θ(t+1)|θ(t)) =
n∑

i=1

E
[
`c(θ|·)|θt ,observed

]
• For the M-step, choose θ(t+1) such that θ(t+1) ∈ Θ and

maximizes Q(θ|θt ),
• i.e. θ(t+1) = argmaxθ∈Θ Q(θ|θ(t))



Background Model The EM algorithm SCEM Simulation study Conclusions

The Generalized EM (GEM) algorithm

We can generalize the EM algorithm by modifying the M-step:

Choose θ ∈ Θ such that Q(θ(t+1)|θ(t)) ≥ Q(θ(t)|θ(t))

• We choose the updated parameter estimate to increase the
Q-function rather than maximize it over the entire parameter
space, Θ.

• This is sufficient to ensure that L(θ(t+1)) ≥ L(θ(t)).
• We are not decreasing the likelihood after each GEM iteration.
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The Q-function for our likelihood

We use the EM algorithm for our particular problem, thus

Q(θ(t+1)|θ(t)) =
n∑

i=1

Qi (θ
(t+1)|θ(t))

=
n∑

i=1

E [`ci (θ)|ai , ci , x∗i , zi ; θ
(t)]

=Q(θA(t+1)|θA(t)) + Q(θC(t+1)|θC(t))

+ Q(θM(t+1)|θM(t)) + Q(θX(t+1)|θX(t))
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Observations from preliminary trials

It was observed that:
• The EM algorithm would often find a ridge or plateau.
• The expectation-conditional maximization (ECM) (Meng and

Rubin 1993) had similar problems.
• Evidence strongly suggested that these problems were linked to

the estimation of θX .
Decision: Take the idea of the ECM and break the problem into
smaller and simpler steps such that we gain stability in parameter
estimation and we retain the desired properties of a GEM algorithm.
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The basic idea of the SCEM

The sequential-conditional expectation-maximization (SCEM)
algorithm is the result of breaking the problem into two simpler
components.

We
1. Estimate {θC(t), θM(t), θX(t)} first, then
2. Estimate θA(s) while holding {θC(t), θM(t), θX(t)} fixed.
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The stages

• The first stage, estimation of {θC , θM , θX}, is the EM algorithm to
the joint distribution

p(C,X ∗,X |Z = zi ; θ)

• The second stage, estimation of θA, is the EM algorithm on the
conditional distribution

p(A|C = 0,X ∗ = x∗,X = x ,Z = zi , θ
C(t), θM(t), θX(t); θA)
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Q-functions for the two stages

The Q-functions for the two stages are
1. Q(θ1(t)|θ1(t−1)) =

Q(θC(t)|θC(t−1)) + Q(θM(t)|θM(t−1)) + Q(θX(t)|θX(t−1))

2. Q(θ2(s)|θ2(s−1)) = Q(θA(s)|θA(s−1))

Such that Q(θ(k)|θ(k−1)) = Q(θ1(t)|θ1(t−1)) + Q(θ2(s)|θ2(s−1)) where
k = s + t and

Q(θA(s)|θA(s−1)) =
n∑

i=1

E [log p(Ai |c = 0, xi , zi ; θ
A)|ai , ci , x∗i , zi , θ

1(t); θA(s−1)]
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Immediate tasks

With this construction, there are two basic questions that need
addressing,

1. Is this still a GEM, and
2. Does it search over the entire parameter space?
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Showing it is a GEM

As with any EM based approach we obtain a set of initial parameter
estimates, θ(0). Since each component is conceived as a GEM we
need only show that the sum is itself a GEM,

Q(θ1(0)|θ1(0)) + Q(θ2(0)|θ2(0)) ≤ Q(θ1(1)|θ1(0)) + Q(θ2(0)|θ2(0))

...

≤ Q(θ1(t)|θ1(t−1)) + Q(θ2(0)|θ2(0))

≤ Q(θ1(t)|θ1(t−1)) + Q(θ2(1)|θ2(0))

...

≤ Q(θ1(t)|θ1(t−1)) + Q(θ2(s)|θ2(s−1))

= Q(θ(k)|θ(k−1))
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Implications for having a GEM

Since we have, by definition, a GEM, we also possess the desired
properties of having
• The desired convergence properties

• Converges to a maximum, perhaps not a global one.

• Sufficient conditions for L(θ(k)) ≥ L(θ(k−1))
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Space-filling property

• We want to ensure that the algorithm searches over the entire
parameter space.

• We will need to
• Define unique parameterization,
• Define functions of the parameters, and
• Show that the convex hull of all of all feasible directions the

algorithm can take at θk is the entire Euclidean space, Rd , where
d = dim(Θ).
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Defining unique parameterization

• We say that our models are uniquely parameterized when
θA, θC , θM , θX are mutually orthogonal

θi ⊥ θj such that i 6= j and i , j ∈ {A,C,M,X}

• Thus,
• θ1 =

⊕
i∈Γ

θΓ where Γ = {A,C,M}.

• θ = θ1 ⊕ θ2, where θ2 = θA.
• θ1 is the orthogonal complement of θ2.
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SCEM as a “constrained” maximization

We can view the proposed SCEM algorithm as a two step procedure
for which each step is maximized subject to a “constraint” which will
define the subspace of Θ over which maximization occurs.

We choose to maximize Q(θ(k)|θ(k−1)) subject to

gp(θ) = θp

such that θp ⊆ θ.
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Searching in any direction from any point: Part 1

As laid out in Meng and Rubin, we want to be able to search in any
direction, at any point in Θ, for the maximum.

• We consider the gradient at point θr for gp(θ)

• Under the assumption of unique parameterization as we have
defined it, then ∇gp(θ) is full rank at θr ∈ Θ for all r .

• The gradient is a set of dp elementary column vectors and a set of
dΘ − dp zero column vectors.

• dΘ = dim(Θ) and dp = dim(θp)
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Searching in any direction from any point: Part 2

If we take η ∈ Rdp , then the column space is

Gp(θ) =span(∇gp(θ))

={∇gp(θ)η|η ∈ Rdp}

so the gradient of our constraint spans the subspace Θp.

This means that we can step in any direction from θr ∈ Θp towards a
maximum.
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Searching in any direction from any point: Part 3

By construction, the intersection of Gp(θ) for all p is⋂
p

Gp(θr ) = ∅

for θr ∈ Θp for all r .

• The intersection of the column spaces is empty.
• This is the empty set in RdΘ
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Searching in any direction from any point: Part 3

Heuristically, we will take the complement in order to identify the
union of the column spaces,[⋂

p

Gp(θr )

]c

=
⋃
p

Gp(θr )c

=
⋃
p

{∇gp(θ)η|η ∈ Rdp}c

=
⋃
p

{∇gp(θ)η|η ∈ Rdp}⊥

=RdΘ
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Implications

• By the construction of our parameter space, the union of linear
hulls is itself a linear hull.

• From any point we can step in any direction in Θ in order to
maximize.

We maximize over the entire Euclidean space RdΘ .
• i.e. we maximize over all Θ.
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Technical note: Convex hull

If we define η ∈ Tp(θ) where

Tp(θ) = {η ∈ Rdp |∃{θp
n} s.t. η = lim

n→∞

θp
n − θp

||θp
n − θp||

}

then we obtain a convex hull by satisfying the additional constraint
that

∑
i ηi = 1 where ηi = [η]i (Meng and Rubin, 1993).
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Implementation for each component

Use Monte-Carlo (MC) integration to approximate the expectation

Q̃(θp|θp(t)) =
n∑

i=1

1
mgi (t)

mgi (t)∑
l=1

`c(θp)

where mgi (t) is the Monte Carlo (MC) sample size as a function of the
t th step for the i th subject
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Making a long story short

• Use Gibbs Adaptive Rejection Sampling (GARS) algorithm (Wild
1993)

• Implicit in this choice is a restriction to log-concave functions
(Gilks 1992 deals with the exponential family)
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M-step

• Maximization of Q̃(θp|θp(t)) is equivalent to component-wise
maximization.

• In many situations, this can be done using standard software.
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Simulation set-up: Simulation structure

• 100 Simulations.
• Sample size, n=500 for each simulation.
• Monte Carlo sample size, 2500.
• Burn-in for MC integration, 1000.
• Dissimilarity criterion for each step of the SCEM:

1. |θ1(t) − θ1(t−1)| ≤ 0.0025
2. |θ2(s) − θ2(s−1)| ≤ 0.0025
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Data generation DAG
Data was generated according to the following MSM DAG.
• Dashed lines indicate that the censoring mechanism was not

included as a covariate in the data generating models, but that it
does affect what is observable.

X∗

(X, Z)

��

�� �� ��C �� ��A �� Y

1
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Simulation set-up: Confounders

• f (X1,X2) ∼ MVN.
• µ = (0,0).
• σii = 1 for i = 1,2.
• σ1,2 = 0.2.
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Simulation set-up: Measurement error model

• Chose X1 to be unobservable, but has observable surrogate X ∗1
• Unbiased classic measurement error model:

• X∗1 = X1 + ε
• ε ∼ N(0, τ)

• We are assuming τ to be known
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Simulation set-up: Model parameterization

• Censoring mechanism:
• logit[Pr(C = 1|X = x)] = θC

0 + θC
1 x1 + θC

2 x2

• where θC = (θC
0 , θ

C
1 , θ

C
2 ) = (−3.664, 0.378,−1.881)

• Treatment model:
• logit[Pr(A = 1|X = x)] = θA

0 + θA
1 x1 + θA

2 x2

• where θA = (θA
0 , θ

A
1 , θ

A
2 ) = (−0.405, 2.630, 2.307)
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Simulation execution

• Generated data as specified
• Removed X1 from the data and censored treatments (i.e. created

an observable data set)
• Assumed correction functional form for all models
• Assumed τ known
• Performed two fits:

1. Unadjusted: Does not account for measured surrogate (naive data
analysis)

2. Adjusted: Accounts for measured surrogate (SCEM analysis)
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Results for step 1: θ1 = {θC , θM , θX}

Model θC
i Ê(θC)(σ̂θC ) Bias(θC)(SEboot) MSE(θC)

Unadjusted
θC

0 -3.698 (0.362) -0.034 (0.037) 0.133
θC

1 0.289 (0.186) -0.089 (0.018) 0.043
θC

2 -1.866 (0.308) 0.015 (0.031) 0.095

Adjusted
θC

0 -3.718 (0.373) -0.054 (0.038) 0.142
θC

1 0.367 (0.238) -0.011 (0.023) 0.057
θC

2 -1.890 (0.319) -0.009 (0.032) 0.102
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Results for step 2: θ2 = θA

Model θA
i Ê(θA)(σ̂θA ) Bias(θA)(SEboot) MSE(θA)

Unadjusted
θA

0 -0.341 (0.153) 0.064 (0.015) 0.028
θA

1 1.735 (0.174) -0.895 (0.017) 0.832
θA

2 2.027 (0.202) -0.280 (0.019) 0.119

Adjusted
θA

0 -0.410 (0.202) -0.004 (0.020) 0.041
θA

1 2.704 (0.446) 0.074 (0.044) 0.204
θA

2 2.361 (0.302) 0.054 (0.029) 0.094
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Simulation summary

• Bias resulting from using the surrogate in a naive fashion has a
bigger effect on the estimation of θA

1 than on θC
1 , although both

are biased.
• The SCEM approach provides a nice reduction of bias for θC

1 but
has a large reduction in the magnitude of the bias for θA

1 .
• This is also seen in the MSE.

• Typical trade-offs seen for θC
0 and θC

2 with the application of the
SCEM, but these trade-offs did not manifest for θA

0 and θA
2 .

• Simulation study suggests that the theoretical convergence
properties should be similar to the EM and ECM properties.
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Conclusions

• The SCEM is a variation of the ECM algorithm and and
extension of the EM algorithm.

• The SCEM produces unbiased estimates of model parameters
for a class of models which has constrained covariates for one of
the conditional models.

• For example, the denominator of the stabilized weight when using
inverse probability of treatment weights.

• The SCEM is a GEM.
• The SCEM permits searches over the entire parameter space

under the assumption that the parameters are variationally
independent (i.e. unique parameterization of the models).

• The simulation results suggest that we have retained the
convergence properties desired in all variations of the EM
algorithm.
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Next Steps

• Theoretical confirmation of the convergence properties.
• Extension of the simulation study to investigate robustness to

violations of assumptions and model specifications.
• Application to MSM point-treatment context.
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 More extensive simulation study (higher number of replications, 
more scenarios for double clustering severity, programming of 
MCMC from scratch instead of using WinBUGS).

 Use of more informative priors for variance parameters.

 Model extension for continuous outcome: spatial component 
(correlation between clusters).

 Extension of current model to binary and count outcomes.

 Alternative methodologies for the analysis of continuous 
outcomes under double clustering: regression calibration.
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