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A IMS OF THIS SEMINAR

• Raise awareness of the impact of dependently missing/incomplete data

• Consider ways of assessing whether this is an issue in studies

• Discuss ways of dealing with it in analysing data from trials

• To develop an understanding of features most likely to be affected by de-
pendently missing/incomplete data.
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SOME BASIC PRINCIPLES REGARDING MISSING DATA

Incomplete data can arise from

• missed assessment

• drop-out

• protocol driven study withdrawal

Standard analyses can giveseriously biasedestimates of means, event rates,
and associated treatment effects

Careful thought and additional analyses are required to investigate the impact
of incomplete data on inferences
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A SIMPLE FOLLOW-UP STUDY

With a binary response, interest often lies in

• the probability of success fortreated patients: P (Y = 1|T = 1)

• the probability of success forcontrol patients: P (Y = 1|T = 0)

• associated measures of treatment effect (ARR, RRR, OR, NNT)

| |
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PROBLEM

With incomplete data,R = 1 if response is observed, andR = 0 otherwise.

We then havethree “outcomes”!

• (Y = 1, R = 1) - success and response observed

• (Y = 0, R = 1) - failure and response observed

• (Y = ?, R = 0) - responsenot observed

| |

?, RESPONSE UNOBSERVED (Y = ?, R = 0)
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IMPLICATIONS OF MISSING DATA

• It is tempting to analyseavailable data in the standard way.

• In this case we are estimating the

probability of success given treatment,and that response was observed.

• This isP (Y = 1|T = 1, R = 1)

CENTRAL QUESTION

• How similar is the probability of success among those subjects observed
and those subjects unobserved?

• DoesP (Y = 1|T,R = 1) = P (Y = 1|T,R = 0)?

• Is sub-sampleavailable at end of studyrepresentative of sample recruited?
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SMOKER’ S HELP-LINES

• Smoker’s wishing help to quit smoking call a ”Help-line” available in many
provinces

• Caller’s receive counselling to help them quit

• Caller’s are asked if they will participate in a study and consent to be con-
tacted for a six month follow-up assessment

• Attempts are made to contact consenting participants six months later

• Not all people consenting people are contacted.

• How does this impact estimation of quit rates among callers to the help-
lines?
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A SIMPLE ILLUSTRATIVE ONE-SAMPLE EXAMPLE

• Population is heterogenous

• Suppose a covariateX explains this heterogeneity

• X = 1 for patient with alow response rate; X = 0 otherwise

• Suppose half of the patients have a low response rate, soP (X = 1) = 0.5

• OUTCOME

• For patients with a low response rate : P (Y = 1|X = 1) = 0.40

• For other patients : P (Y = 1|X = 0) = 0.80

• M ISSING STATUS

• For patients with low response rate: P (R = 1|X = 1) = 0.50

• For other patients : P (R = 1|X = 0) = 1.00
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In clinical trials, primary interest is inmarginal response rates, P (Y = 1)

• In this example, the marginal response rate in the population is

P (Y = 1) = 0.60

• Among those with an observed response,

P (Y = 1|R = 1) = 0.66!

• This difference of 6% arises because there isa lower percentage of individ-
uals with a low response rate available at study completion.

• Rates are the same if

• Variable X is not associated with missingness (e.g.P (R|X) = P (R) )

• Outcome (Y) and “missingness” (R) are independent
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APPROACH1: ADOPT A MORE COMPLETE MODEL FOR RESPONSE PROCESS

• Control forX in analysis(analysis of covariance, ANCOVA)

• This approach renders missingness unimportant

• ThenP (Y = 1|X,R = 1) = P (Y = 1|X)

• But, we abandoned our original objective of estimatingP (Y = 1)!

• With some work we can average over covariate distribution toobtain

EX(P (Y = 1|X)) = P (Y = 1)
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APPROACH2: MODEL THE MISSING DATA PROCESS

• ModelP (R = 1|X) via logistic regression, say

• Then construct an estimating equation

m∑

i=1

Ri

P (Ri|Xi)
(Yi − P (Yi = 1))

giving aweighted estimate

P (Yi = 1) =

m∑

i=1
RiYi/P (Ri = 1|Xi)

m∑

i=1
Ri/P (Ri = 1|Xi)

• Numerator and denominator areweighted sums where each observed per-
son’s contributionis weighted since theyrepresent individuals in the origi-
nal sample for whomR = 0
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EXAMPLES OF RECURRENT EVENT PROCESSES

• Exacerbations in respiratory diseases such as asthma or cystic fibrosis

• Occurrence of seizures in neurology (e.g. epilepsy)

• Graft rejection episodes in transplant studies and total graft rejection

• Trials of cancer patients with bone metastases at risk of fractures and death

TIMELINE DIAGRAM Tk is the time of thekth event

| | | |

t = 0 t1 t2 t3 C
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A TRIAL OF PATIENTS WITH SKELETAL METASTASES1

• An international multi-center randomized placebo-controlled trial of stage
IV breast cancer patients with at least one≥ 1 cm lytic bone lesion (metas-
tasis)

• Bone metastases compromise the integrity of skeletal structure and cause
bone pain

• Aim of trial is to improve quality of life rather than affect survival

• Clinical event is a “skeletal event” (e.g. fracture) which arise from bone
metastases

• 185 received pamidronate and187 received placebo

• 24 months follow-up in extension phase

1Hortobagyi GN, Theriault RL, Lipton A, Porter L, Blayney D, Sinoff C, Wheeler H, Simeone JF, Seaman J, Knight RD, Heffernan M, Mellars K, and Reitsma
DJ (1998). Long-term prevention of skeletal complicationsof metastatic breast cancer with pamidronate.J. Clin. Oncol. 16, 2038–2044.
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TIMELINE DIAGRAMS FOR SELECTED PATIENTS
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COUNTING PROCESSN(t) FOR A SINGLE SUBJECT

| | | |

−

−

−

−

0

1

2

3

t1 t2 t3 C

t

NOTATION

• {N(s), 0 < s} is event processwhereN(s) =
∞∑

k=1

I(Tk ≤ s)

• H(s) = {N(u), 0 < u < s} is process history

• dN(s) = 1 if event at times; dN(s) = 0 otherwise.
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MEAN AND RATE FUNCTION ESTIMATION

• Let {Ni(s), 0 < s} be counting process for subjecti

• Ci is random right censoring time andYi(s) = I(s ≤ Ci)

• Yi(s) = I(s ≤ Ci)

• Marginal mean and rate functions offer a natural basis for treatment com-
parisons

µ(t) = E{N(t)} and dµ(t) = µ′(t)dt

ESTIMATING FUNCTION

m∑

i=1

I(Ci ≥ t) {dNi(t) − dµ(t)} (2.1)

dµ̂(t) =
dN̄·(t)

Y·(t)
and µ̂(t) =

∫ t
0
dµ̂(s)

• µ̂(t) is theNelson-Aalen (NA)estimate
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DEPENDENT WITHDRAWAL

m∑

i=1

I(Ci ≥ t) {dNi(t) − dµ(t)} = 0

• Validity of (2.1) requiresCi ⊥ {Ni(s), 0 < s} so

E{dNi(t)|Ci ≥ t} = E{dNi(t)} = dµ(t)

• This means that thedecision to withdraw a patient from a trial cannot de-
pend on their past responses (or future!)

• We say that“censoring is completely independent of the event process”

• Is this reasonable in the current study?

• How plausible is this more generally in clinical trials?
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ASSESSING DEPENDENT WITHDRAWAL

E0 E1 E2 E3
λ0(t) λ1(t) λ2(t)

C0 C1 C2 C3

γ0(t) γ1(t) γ2(t) γ3(t)

• Censoring rates denoted byγk(t)

If γk(t) = γ(t), censoring iscompletely independent

– Otherwise, censoring isevent-dependent

• Event rates are denoted byλk(t)

If λk+1(t) > λk(t) thenrisk of events increases with each event
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CUMULATIVE CENSORING RATES [PLACEBO]
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HOW TO PROCEED WITH EVENT-DEPENDENT CENSORING?

As in the simple example of Section 1 we have two options.

If we are interested in estimating the expected number of events, we can

A. model the censoring processand adjust (2.1) by the inclusion of

“inverse probability of censoring weights”

B. model the process{Ni(s), 0 < s} more fully and then “marginalize” to get
E{Ni(t)}
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A. USING INVERSE PROBABILITY OF CENSORING WEIGHTS (IPCW)

m∑

i=1

Ui(t) =
m∑

i=1

I(Ci ≥ t)

Gi(t)
{dNi(t) − dµ(t)} = 0 (2.2)

• Gi(t) = Pr (Ci ≥ t|Hi(t)).

• ReplaceGi(t) in (2.2) with estimatêGi(t) to give

dµ̂(t) =

m∑

i=1

I(Ci ≥ t)dNi(t)/
̂Gi(t)

m∑

i=1

I(Ci ≥ t)/̂Gi(t)

• µ̂(t) =
t∫

0

dµ̂(s) is theweighted Nelson-Aalenestimate
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A MODEL FOR THE CENSORING PROCESS

If dΛc (s|Hi(s)) is the censoring intensity, let

Gi(t) == exp
{

−
∫ t
0
dΛc (s|Hi(s)) ds

}

(2.3)

With event-dependent censoring, consider Markov models with

dΛc(t|Hi(t)) = dΛc(t|Ni(t
−) = j) = dΛc

j(t)

This means that censoring depends on the cumulative number of events

This is easily estimated using survival analysis software handlingtime-dependent
stratification.
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B. MODELING THE EVENT PROCESS: WORKING MARKOV MODELS

0 1 2 3
α0 (t) α1 (t) α2 (t)

STEPS IN ESTIMATION

• Estimate “transition intensities”αk(u)

• ComputePjk(s, t) = P (Y (t) = k|Y (s) = j) is the transition probability
matrix under Markov model

• Estimates are consistent forP (0, t) in non-Markov models2 3 4

• We obtain a robust estimate of the mean function based on

µ̂(t) =
∞∑

k=1

k ̂P0k(0, t)

• A partially conditional model protects against event-dependent censoring

2Aalen et al. (2001). Biometrics
3Datta and Satten (2001). Statistics and Probability Letters
4Glidden (2002). Biometrics.
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EVENT PLOTS
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CUMULATIVE EVENT INTENSITIES [PLACEBO]

0 3 6 9 12 15 18 21 24

0

1

2

3

4

5

6

7

8

C
U

M
U

LA
T

IV
E

  I
N

T
E

N
S

IT
Y

  F
U

N
C

T
IO

N
  F

O
R

  S
K

E
LE

T
A

L 
 E

V
E

N
T

S

MONTHS  SINCE  STUDY  ENTRY

NO  SKELETAL  EVENT  −>  1  SKELETAL  EVENT
1  SKELETAL  EVENT   −>  2  SKELETAL  EVENTS
2  SKELETAL  EVENTS  −>  3  SKELETAL  EVENTS



RECURRENT EVENTS WITH DEPENDENT CENSORING 26

CUMULATIVE INTENSITIES FOR CENSORING [PLACEBO]

0 3 6 9 12 15 18 21 24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

C
U

M
U

LA
T

IV
E

  I
N

T
E

N
S

IT
Y

  F
U

N
C

T
IO

N
  F

O
R

  C
E

N
S

O
R

IN
G

MONTHS  SINCE  STUDY  ENTRY

NO  SKELETAL  EVENT  −>  CENSORED
1  SKELETAL  EVENT   −>  CENSORED
2  SKELETAL  EVENTS  −>  CENSORED



RECURRENT EVENTS WITH DEPENDENT CENSORING 27

ESTIMATES OF STATE OCCUPANCY PROBABILITIES [PLACEBO]
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MEAN FUNCTION ESTIMATES [PLACEBO]

0 3 6 9 12 15 18 21 24

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
U

M
U

LA
T

IV
E

  M
E

A
N

  F
U

N
C

T
IO

N

MONTHS  SINCE  STUDY  ENTRY

C&L
WEIGHTED C&L
PEPE
WEIGHTED PEPE
A−J
WEIGHTED A−J



RECURRENT EVENTS WITH DEPENDENT CENSORING 29

MEAN FUNCTION ESTIMATES [PAMIDRONATE]
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ASSESSING THE TREATMENT EFFECT

• The methods of inverse weighting we’ve discussed this far can be adapted
for regression analyses

• An unweighted analysisis carried out on the data from Hortobagyi et al.
(1996) we obtain

̂β = −0.617, s.e.(̂β)= 0.095

RR= exp(−0.617) = 0.540, p<0.0001

• A weighted analysisgives a slightly smaller estimate
̂β = −0.584, s.e.(̂β)= 0.182

RR= exp(−0.584) = 0.558, p=0.0013
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AN INTERESTING RESPIRATORY TRIAL

• multicenter international randomized trial of patients with COPD

• 358 patients randomized toexperimental treatment

• 361 patients randomized tocontrol

• Follow-up scheduled for 12 months

• Recurrent events (exacerbations)were recorded as secondary endpoints and
classified by type

– TYPE 1: moderately serious

– TYPE 2: serious/very serious
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EXPECTED NUMBER OF TYPE 1 EVENTS
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BIVARIATE RECURRENT EVENT DATA

Type 1 | | | | |

0 Si11 Si12 Si13 Ci

Type 2 | | | |

0 Si21 Si22 Ci

• {Nij(s), 0 ≤ s} records eventsof typej experienced by individuali

• dNij(s) = 1 if a typej event occurs at times ; dNij(s) = 0 otherwise

• bivariate counting processis{Ni(s), 0 ≤ s}whereNi(s) = (Ni1(s), Ni2(s))
′

• Ci is right censoring time
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RESPIRATORY TRIAL FEATURES DEPENDENT CENSORING

• Trial involves withdrawal of patients from trial when they have hadtwo
type 2 events

• What is the impact on this analysis of type 1 events?

Marginal analysis is invalid if event types are associated!

Type 2

Events

Type 1 Events
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0 1 2 3 4
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MULTISTATE ANALYSIS
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WHAT CAN BE ESTIMATED HERE?

• Let Pr1r2
(t) = P (N1(t) = r1, N2(t) = n2)

• Then
µ1(t) =

∞∑

r1=0

∞∑

r2=0

r1Pr1r2
(t) =

∞∑

r1=0

r1P (N1(t) = r1) .

• We need to estimate joint probabilitiesPr1,r2
(t) consistently, but this is is

inestimable nonparametrically forr2 > k soµ1(t) is nonparametrically in-
estimable.

• We can nonparametrically estimate

P (N1(t) = r1, N2(t) = K)

P (N1(t) = r1|N2(t) ≤ K)

E{N1(t)|N2(t) ≤ K}

• More fully specified modelswhich characterize the event process are useful.
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ESTIMATING EXPECTED NO. EXACERBATIONS WITH DEPENDENT
CENSORING
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GENERAL REMARKS

• We have discussed

• missing data where the dependence is on a baseline covariate(part I)

• event-dependent censoring with recurrent event analyses (part II)

• Dependent censoring can also arise when people drop out of a study for
reasons related to a response

• In survival analysis (not recurrent event analysis), dependent censoring can
have a significant impact

– In this case, dependence is induced by related time-varyingcovariates
we do not wish to control for

• Can also arise in multistate analyses for more complex disease processes
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TAKE HOME MESSAGES

• Be aware of possible effects of an association between the withdrawal/censoring
process in trials and the responses of interest

• Although this was not discussed, similar issues arise in observational stud-
ies

• The issues are similar whether dealing with drop-out in longitudinal studies
with regularly scheduled assessments or study withdrawal when time to
event analyses are planned (although the models for dealingwith them are
different)

• Survival analysis techniques can be used to assess whether it is cause for
concern in a particular study

• Estimates of marginal features like proportions responding, or the prob-
ability of surviving 1 year, are typically more affected than estimates of
treatment effects
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• Inverse probability of censoring weighted approaches can be used to ad-
dress these concerns

• The “price” is the need to model the censoring process, whichis often not
of direct interest


