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AIMS OF THIS SEMINAR

e Raise awareness of the impact of dependently missing/iplmiendata
e Consider ways of assessing whether this is an issue in studie
e Discuss ways of dealing with it in analysing data from trials

e To develop an understanding of features most likely to bectdtd by de-
pendently missing/incomplete data.
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SOME BASIC PRINCIPLES REGARDING MISSING DATA

Incomplete data can arise from
e Mmissed assessment
e drop-out

e protocol driven study withdrawal

Standard analyses can gigeriously biase@stimates of means, event rates,
and associated treatment effects

Careful thought and additional analyses are required tesinyate the impact
of iIncomplete data on inferences
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A SIMPLE FOLLOW-UP STUDY

With a binary response, interest often lies in

e the probability of success fareated patientsP(Y = 1|T = 1)
e the probability of success faontrol patients P(Y = 1|T" = 0)
e associated measures of treatment effect (ARR, RRR, OR, NNT)

POSSIBLE OUTCOMES

T - TREATMENT SUCCESS Y=1
X = RISK FACTORS FAILURE Y=0
| |
| |
STUDY OUTCOME

ENTRY ASSESSMENT
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PROBLEM
With incomplete dataRk = 1 if response is observed, aiti= 0 otherwise.

We then havehree “outcomed”
e (Y =1,R=1)-success and response observed
e (Y =0,R =1) - failure and response observed

e (Y =7 R=0)-responseot observed

POSSIBLE OUTCOMES

T - TREATMENT SUCCESS, RESPONSE OBSERVED (Y=1,R=1)
X - RISK FACTORS FAILURE, RESPONSE OBSERVED (Y=0,R=1)
?,  RESPONSE UNOBSERVED (Y=2?,R=0)
i I
STUDY OUTCOME

ENTRY ASSESSMENT
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IMPLICATIONS OF MISSING DATA

e It IS tempting to analysavailable data in the standard way.

e In this case we are estimating the
probability of success given treatmeaid that response was observed.

e ThisisP(Y =1T=1,R=1)

CENTRAL QUESTION

e How similar is the probability of success among those sudjebserved
and those subjects unobserved?

e DoesP(Y = 1|T,R=1)= P(Y = 1|T, R = 0)?

e Is sub-samplavailable at end of studypresentative of sample recruited?
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SMOKER’S HELP-LINES

e Smoker’s wishing help to quit smoking call a "Help-line” aadle in many
provinces

e Caller’s receive counselling to help them quit

e Caller's are asked if they will participate in a study and $&mt to be con-
tacted for a six month follow-up assessment

e Attempts are made to contact consenting participants sixtinsdater
e Not all people consenting people are contacted.

e How does this impact estimation of quit rates among callersh¢ help-
lines?
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A SIMPLE ILLUSTRATIVE ONE-SAMPLE EXAMPLE

e Population is heterogenous

e Suppose a covariat® explains this heterogeneity

e X = 1 for patient with aow response rateX = 0 otherwise

e Suppose half of the patients have a low response rate(&o= 1) = 0.5

e OUTCOME

e For patients with a low response rate :
e For other patients :

e MISSING STATUS

e For patients with low response rate:
e For other patients :
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In clinical trials, primary interest is imarginal responserates, P(Y = 1)
e In this example, the marginal response rate in the populadio

P(Y =1) = 0.60

e Among those with an observed response,

P(Y =1|R=1) = 0.60!

e This difference of 6% arises because ther liswer percentage of individ-
uals with a low response rate available at study completion.

e Rates are the same if

e Variable X is not associated with missingness (&gR|X) = P(R))
e Outcome (Y) and “missingness” (R) are independent
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APPROACH1: ADOPT A MORE COMPLETE MODEL FOR RESPONSE PROCESS

e Control for X in analysig(analysis of covariance, ANCOVA)

e This approach renders missingness unimportant

e ThenP(Y =1|X,R=1) = P(Y = 1|X)

e But, we abandoned our original objective of estimating” = 1)!

e With some work we can average over covariate distributiocobti@ain

Ex(P(Y =1|X)) = P(Y = 1)
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APPROACHZ2: MODEL THE MISSING DATA PROCESS

e Model P(R = 1|X) via logistic regression, say

e Then construct an estimating equation

w R
S = D)

giving aweighted estimate

g R;Y;/P(R; = 1]X;)
i/ P(R; = 1|X;)

:U

e Numerator and denominator angeighted sums where each observed per-
son’s contributions weighted since thesepresent individuals in the origi-
nal sample for whomR = 0
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EXAMPLES OF RECURRENT EVENT PROCESSES

e Exacerbations in respiratory diseases such as asthmatmr fdysis
e Occurrence of seizures in neurology (e.g. epilepsy)
e Graft rejection episodes in transplant studies and totdt gejection

e Trials of cancer patients with bone metastases at risk ofuras and death

TIMELINE DIAGRAM T} is the time of the:th event
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A TRIAL OF PATIENTS WITH SKELETAL METASTASES!

e An international multi-center randomized placebo-cadigmbtrial of stage
IV breast cancer patients with at least oné cm lytic bone lesion (metas-
tasis)

e Bone metastases compromise the integrity of skeletaltstei@and cause
bone pain

e Aim of trial is to improve quality of life rather than affectissival

e Clinical event is a “skeletal event” (e.g. fracture) whialisa from bone
metastases

e 185 received pamidronate and7 received placebo
¢ 24 months follow-up in extension phase

'Hortobagyi GN, Theriault RL, Lipton A, Porter L, Blayney Dir8ff C, Wheeler H, Simeone JF, Seaman J, Knight RD, HefieiaMellars K, and Reitsma
DJ (1998). Long-term prevention of skeletal complicatiohmetastatic breast cancer with pamidrondté€lin. Oncol. 16, 2038—2044.
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TIMELINE DIAGRAMS FOR SELECTED PATIENTS

PAMIDRONATE
© 0N O UM ®WN P
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COUNTING PROCESSV(t) FOR A SINGLE SUBJECT

3 7 °

2 —o

1 ° o

o | .

ti1 tl2 ti3 é
t
NOTATION
e {N(s),0 < s} isevent proceswhereN(s) = k%‘f (T < s)
=1

e H(s) ={N(u),0 < u < s}isprocess history

e dN(s) = 1if event at times; dN(s) = 0 otherwise.

15
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MEAN AND RATE FUNCTION ESTIMATION

e Let{N;(s),0 < s} be counting process for subject
e (; israndomright censoring time anll;(s) = I(s < C})
o Yi(s) = I(s < Cj)

e Marginal mean and rate functions offer a natural basis fattnent com-
parisons

p(t)=E{N@#)} and  du(t)=p'(t)dt

ESTIMATING FUNCTION

3 1(C; = 1) {ANi(t) — dpu(t)} (2.1)
dutt) =) and ) = ffdnts

e /i(t) is theNelson-Aalen (NA)estimate
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DEPENDENT WITHDRAWAL

S 1(C; > 1) {dNi(t) — du(t)} = 0

e Validity of (2.1) requires”; 1. {N;(s),0 < s} so
E{dN;(t)|C; = t} = E{dN;(t)} = du(?)

e This means that theecision to withdraw a patient from a trial cannot de-
pend on their past responses (or future!)

e \We say thatcensoring is completely independent of the event process”
e IS this reasonable in the current study?

e How plausible is this more generally in clinical trials?
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ASSESSING DEPENDENT WITHDRAWAL

CO C1l C2 C3

Yo(t) T ya(t) T ya(t) T ya(t) T

Aolt) M(t) Ao(t)

EO|l ——|El|——— | E2 |——> | E3 | —>

e Censoring rates denoted by(t)

If vi.(t) = ~(t), censoring ixompletely independent
— Otherwise, censoring Bvent-dependent

e Event rates are denoted Ry(?)

If A\ei1(f) > Ax(t) thenrisk of events increases with each event

18
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CUMULATIVE CENSORING RATES

CUMULATIVE INTENSITY FUNCTION FOR CENSORING

19

[PLACEBO]
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HOW TO PROCEED WITH EVENT-DEPENDENT CENSORING?
As in the simple example of Section 1 we have two options.

If we are interested in estimating the expected number afteyave can

A. model the censoring proceand adjust (2.1) by the inclusion of

“Inverse probability of censoring weights”

B. model the proces§N;(s),0 < s} more fully and then “marginalize” to get
E{N;(t)}
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A. USING INVERSE PROBABILITY OF CENSORING WEIGHTS (IPCW)

1(C; > t)
Gi(t)

]

=
[

WE

{dNi(t) — dp(t)} = 0 (2.2)

<
|
—_
~
|
—_

® Gz<t) = Pr (Cz > t‘HZ@))
e Replacel;(t) in (2.2) with estimate’;(¢) to give

S 1(C; > DAN(1)/G(t)
da(t) = = —
2 (G 2 1)/Gi(t)

dii(s) is theweighted Nelson-Aaleestimate

o
=)
“~
S~—

|
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A MODEL FOR THE CENSORING PROCESS

If dA°(s|H;(s)) Is the censoring intensity, let
Gi(t) == exp{— [y A" (s|H,(s)) ds} (2.3)

With event-dependent censorjrapnsider Markov models with
ANt H()) = dA“(HN(t7) = j) = dAS (t)
This means that censoring depends on the cumulative nurhbeemts

This is easily estimated using survival analysis softwaedhingtime-dependent
stratification.
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B. MODELING THE EVENT PROCESS: WORKING MARKOV MODELS

O |——

Oo (t)

STEPS IN ESTIMATION

e Estimate “transition intensities¥; (u)

—

oy (t)

—

az (t)

23

e ComputePj,(s,t) = P(Y(t) = k|Y(s) = j) is the transition probability
matrix under Markov model

e Estimates are consistent f&x0, ¢) in non-Markov model$ 3 4

e \We obtain a robust estimate of the mean function based on

alt) = S kPu(0,1)

e A partially conditional model protects against event-dependent censoring

2Aalen et al. (2001). Biometrics

3Datta and Satten (2001). Statistics and Probability Letter

4Glidden (2002). Biometrics.
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EVENT PLOTS

24
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CUMULATIVE EVENT INTENSITIES [PLACEBO]

—— NO SKELETAL EVENT —-> 1 SKELETAL EVENT
—— 1 SKELETAL EVENT -> 2 SKELETAL EVENTS
—— 2 SKELETAL EVENTS -> 3 SKELETAL EVENTS

CUMULATIVE INTENSITY FUNCTION FOR SKELETAL EVENTS
B
|

MONTHS SINCE STUDY ENTRY



RECURRENT EVENTS WITH DEPENDENT CENSORING

CUMULATIVE INTENSITIES FOR CENSORING

CUMULATIVE INTENSITY FUNCTION FOR CENSORING

26
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ESTIMATES OF STATE OCCUPANCY PROBABILITIES

PREVALENCE FUNCTION FOR STATE 0

PREVALENCE FUNCTION FOR STATE 2
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MEAN FUNCTION ESTIMATES

CUMULATIVE MEAN FUNCTION

28

[PLACEBO]
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MEAN FUNCTION ESTIMATES [PAMIDRONATE]
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ASSESSING THE TREATMENT EFFECT

e The methods of inverse weighting we've discussed this farbmaadapted
for regression analyses

e An unweighted analysis carried out on the data from Hortobagyi et al.
(1996) we obtain

3 = —0.617, s.e.(3)= 0.095
RR= exp(—0.617) = 0.540, p<0.0001

e A weighted analysigives a slightly smaller estimate

3 =—0.584, s.e.)=0.182
RR= exp(—0.584) = 0.558, p=0.0013
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AN INTERESTING RESPIRATORY TRIAL

e multicenter international randomized trial of patientshfCOPD

e 358 patients randomized &xperimental treatment

e 361 patients randomized tmntrol
e Follow-up scheduled for 12 months

e Recurrent events (exacerbatiom@re recorded as secondary endpoints and
classified by type

— TYPE 1. moderately serious
— TYPE 2. serious/very serious
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EXPECTED NUMBER OF TYPE 1 EVENTS

CUMULATIVE EXPECTED NUMBER OF TYPE 1 EVENTS
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BIVARIATE RECURRENT EVENT DATA

Type 1 I I I I |

Type 2 I I I I

e {N;;(s),0 < s} records eventsf type ; experienced by individual
e dN;i(s) = 1if atype; event occurs at time; dN;;(s) = 0 otherwise
e bivariate counting process{N;(s),0 < s} whereN;(s) = (Nj1(s), Nj(s))’

e (; IS right censoring time
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RESPIRATORY TRIAL FEATURES DEPENDENT CENSORING

e Trial involves withdrawal of patients from trial when they have hiab
type 2 events

e What is the impact on this analysis of type 1 events?

Marginal analysis is invalid if event types are associated!

Type 1 Events

Type2 1 . . .
Events l
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MULTISTATE ANALYSIS

0

Z [0, 2] [1, 2]

L

>

L
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e [0, 1] [1, 1]

] T T
[0, 0] [1, O]

2, 0]

TYPE 1 EVENTS
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WHAT CAN BE ESTIMATED HERE?
o Let Pﬁm(t) = P(Nl(t) =T, Ng(t) = 7?,2)

e Then
mt)= > S rPo,t)= > rP(Ni(t) =) .

r1=07r9=0 r1=0
e We need to estimate joint probabilitié3, ,,(¢) consistently, but this is is

inestimable nonparametrically fog > & sou4(t) is nonparametrically in-
estimable.

e \We can nonparametrically estimate
P(N1<t) =T, Ng(t) — K)
P(N1<t) = Tl‘NQ(t) S K)
E{N1(t)|No(t) < K}

e More fully specified modelahich characterize the event process are useful.
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ESTIMATING EXPECTED NO. EXACERBATIONS WITH DEPENDENT
CENSORING
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GENERAL REMARKS

e \We have discussed

e Mmissing data where the dependence is on a baseline covguzatd)
e event-dependent censoring with recurrent event analpsesl()

e Dependent censoring can also arise when people drop out toflg for
reasons related to a response

e In survival analysis (not recurrent event analysis), ddpahcensoring can
have a significant impact

—In this case, dependence is induced by related time-vamgangriates
we do not wish to control for

e Can also arise in multistate analyses for more complex siespeocesses
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TAKE HOME MESSAGES

e Be aware of possible effects of an association between tihelxawal/censoring
process in trials and the responses of interest

e Although this was not discussed, similar issues arise iemasional stud-
les

e The issues are similar whether dealing with drop-out in tuagnal studies
with regularly scheduled assessments or study withdravildnwtime to

event analyses are planned (although the models for dealthghem are
different)

e Survival analysis techniques can be used to assess whetharause for
concern in a particular study

e Estimates of marginal features like proportions respampdor the prob-

ability of surviving 1 year, are typically more affected thastimates of
treatment effects
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e Inverse probability of censoring weighted approaches @anded to ad-
dress these concerns

e The “price” is the need to model the censoring process, wisicten not
of direct interest



