Statistical Genetics and Coronary Artery Disease

Robert Davies October 8th, 2010 CANNECTIN UNIVERSITY OF OTTAWA HEART IN STITUTE

Outline

- Part 0 Rationale
- Part 1 Genetics
- Part 2 Ethnicity
- Part 3 Prediction

```
Part 0 – Rationale
Part 1 - Genetics
Part 2 - Ethnicity
Part 3 - Prediction
```

Rationale

This group

- CAnadiaN Network and Centre for Trials Internationally (CANNeCTIN)
- This seminar series
 - Biostatistics Methodology Videoconference
 - Advanced Issues in Clinical Trials Methodology
- This presentation
 - Statistical genetics?

Why?

ReAssessment of Anti-Platelet Therapy Using an InDividualized Strategy Based on GENetic Evaluation (RAPID GENE)

This study is currently recruiting participants.

Verified by University of Ottawa Heart Institute, August 2010

Sponsor:	University of <mark>Ottawa</mark> Heart Institute
Collaborator:	Spartan Bioscience Inc.
Information provided by:	University of Ottawa Heart Institute
ClinicalTrials.gov Identifier:	NCT01184300

First Received: August 17, 2010 Last Updated: August 23, 2010 History of Changes

http://clinicaltrials.gov/ct2/show/NCT01184300?term=ottawa+jason+roberts&rank=1

Improved Prediction of Cardiovascular Disease Based on a Panel of Single-Nucleotide Polymorphisms Identified Through Genome-Wide Association Studies

Robert W. Davies, MSc; Sonny Dandona, MD; Alexandre F.R. Stewart, PhD; Li Chen, MSc; Stephan G. Ellis, MD; W.H. Wilson Tang, MD; Stanley L. Hazen, MD, PhD; Robert Roberts, MD; Ruth McPherson, MD, PhD; George A. Wells, MSc, PhD

```
Part 0 - Rationale
Part 1 - Genetics
Part 2 - Ethnicity
Part 3 - Prediction
```


Refs:

http://www.plosbiology.org/article/slideshow.action?uri=info:doi/10.1371/journal.pbio.0050266

http://en.wikipedia.org/wiki/File:Biological_cell.svg

http://en.wikipedia.org/wiki/File:DNA_chemical_structure.svg

http://en.wikipedia.org/wiki/File:Epithelial-cells.jpg

DNA is important DNA is susceptible to mutations

http://en.wikipedia.org/wiki/File:Chromosomes_mutations-en.svg_4 http://en.wikipedia.org/wiki/File:Proteinsynthesis.png

The Single Nucleotide Polymorphism (SNP). Example rs1333049

>hg19_gwasCatalog_rs1333049 range=chr9:22125453-22125553 5'pad=50 3'pad=50 strand=+ repeatMasking=none TGGTCACTACCCTACTGTCATTCCTCA TACTAACCATATGATCAACAGTT**[G/C J**AAAAGCAGCCACTCGCAGAGGTAAG CAAGATATATGGTAAATACTGTGT T

http://genome.ucsc.edu/cgi-bin/hgc?

 $\label{eq:hgsid} hgsid=170305062\&g=htcGetDna2\&table=gwasCatalog&i=rs1333049\&o=22125502&l=22125502&r=22125503&c=22125503&c=22125503&c=22125503&c=22125503&c=22125502&r=22125503&c=22125502&r=22125502&r=22125503&c=22125502&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=2212550&r=221256&r=2212550&r=2212&r=2212550&r=2212&r=2212550&r=2212&r=$

22%2C125%2C503&hgSeq.cdsExon=1&hgSeq.padding5=50&hgSeq.padding3=50&hgSeq.casing=upp er&boolshad.hgSeq.maskRepeats=0&hgSeq.repMasking=lower&boolshad.hgSeq.revComp=0&submit= get+DNA

Population Diversity

	Sample Ascertainment				Gen	otype	Detail	NEW	All	eles
ss#	Population	Individual Group	Chrom. Sample Cnt.	Source	C/C	C/G	G/G	HWP	c	G
<u>ss66441130</u>	HapMap-CEU	European	118	GF	0.220	0.542	0.237		0.492	0.508
<u>ss97786460</u>	J. Craig Venter		2	IG		1.000			0.500	0.500
			Adventor Tomore Tomor	AG TCA TCA	IT G A Act IT C A Agt		3' Г 5' 3' 3'	rs13	3330 GC =	49 = 1

http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=rs1333049 http://www.plosbiology.org/article/slideshow.action?uri=info:doi/10.1371/journal.pbi**d.0**050266

Lots and lots of SNPs

Vol 449 18 October 2007 doi:10.1038/nature06258

nature

A second generation human haplotype map of over 3.1 million SNPs

The International HapMap Consortium*

2010 - About 10M SNPs

Genome Wide Association Study (GWAS)

- Choose phenotype and collect subjects – ex: CAD
 - Either continuous, ie HDL, LDL, etc, or binary, ie CAD vs control
- Get DNA and run whole genome microarray
- Search for SNPs which are "statistically significantly" different with respect to phenotype

What's actually done in a GWAS in triangle form

Typical Results

Manhattan plot - WTCCC_500k.postPCA.imputed.analysis_2 cad_frequentist_add_sex_pc1_pc2_thresh_pvalue

Part 0 - Rationale Part 1 - Genetics Part 2 - Ethnicity Part 3 - Prediction

Ethnicity

• This section

- Explain mathematical basis of PCA briefly
- Show how we use it to identify genetic outliers
- Explain ancestry informative SNPs
- Show how to find them
- Show what they look like in our data
- Explain how they may be used

Novembre et al 2008, Nature, Genes mirror geography within Europe

Let G be an m by n matrix of genotypes, where m equals the number of SNPs and n the number of subjects. Therefore, $G_{i,j}$ is the genotype of the *jth* person for the *ith* SNP.

Consider a zero centered version of G, X, such that

$$X_{i,j} = G_{i,j} - \frac{1}{n} \sum_{j=1}^{n} G_{i,j}$$
(1)

X may or may not be normalized with respect to the observed allele frequency of the SNP *i*. Principal components analysis allows for the definition of a transformation matrix P of dimension $m \times m$ such that

$$Y = PX \tag{2}$$

where the i^{th} row of Y represent the i^{th} principal component. One way to calculate the principal components is to first calculate the covariance matrix M between subjects

$$M = X^T X \tag{3}$$

The i^{th} eigenvector of M is equivalent to the i^{th} row of P, which is an easy mathematical calculation. In practice, calculating the eigenvectors of M is dominated by calculating the matrix product of $X^T X$, and for $n \ll m$, this is $O(mn^2)$ (for m small, it is $O(n^3)$).

WTCCC 2007 Nature 7 June 2007 p661

http://commons.wikimedia.org/wiki/File:Blank_map_europe.png Colours added post-acquisition 22

Ancestry Informative SNPs

- A lot of SNPs are useless
 - Low frequency, same in different populations, etc.
- How many SNPs do we really need to identify populations?

PCA using Ancestry Informative SNPs

- "We ... achieve perfect intercontinental differentiation with **14** PCA-correlated SNPs" – Paschou et al. PLoS Genetics 2007 e160
- "Only 150-200 PCAIMs (PCA-informative markers) suffice to accurately predict fine structure in European Americans" – Paschou et al. PLoS Genetics 2008 e1000114
- Price et al. show that **100** SNPs explains the ancestry of non-Ashkenazi Jewish European American. PLoS Genetics e236

How to select ancestry informative PCA's?

- Take dataset
- Remove outliers (ie non-Caucasians)
- Perform PCA again
- Regress first few PC's against SNPs
- Select SNPs which are of the highest technicaly quality which best explain PC's

0 1 2 3 4 5 CC 0.1785714 0.2097902 0.3253012 0.4196332 0.60542169 0.74309979 CT 0.3785714 0.3916084 0.4939759 0.4368932 0.34789157 0.23354565 TT 0.4428571 0.3986014 0.1807229 0.1434736 0.04668675 0.02335456

> 0 1 2 3 4 5 CC 25 30 54 389 1608 350 CT 53 56 82 405 924 110 TT 62 57 30 133 124 11

LCT gene rs2322659

How to use this data?

- Ensure homogenous population
- Use as a covariate in future prediction studies
 - Very interesting will this matter?
 - Determine ethnic susceptibility
- As a correction in GWAS where sharing subject level whole genome data is not possible

- Part 0 Rationale
- O Part 1 Genetics
- O Part 2 Ethnicity
- Part 3 Prediction

Prediction

• This section

 Describe a paper recently published by us

Improved Prediction of Cardiovascular Disease Based on a Panel of Single-Nucleotide Polymorphisms Identified Through Genome-Wide Association Studies

Robert W. Davies, MSc; Sonny Dandona, MD; Alexandre F.R. Stewart, PhD; Li Chen, MSc; Stephan G. Ellis, MD; W.H. Wilson Tang, MD; Stanley L. Hazen, MD, PhD; Robert Roberts, MD; Ruth McPherson, MD, PhD; George A. Wells, MSc, PhD

Several CAD GWAS identified 9p21 in 2007 A Common Variant on Chromosome

A Common Allele on Chromosome 9 Associated with Coronary Heart Disease

Ruth McPherson, ¹*† Alexander Pertsemlidis, ²* Nihan Kavaslar, ¹ Alexandre Stewart, ¹ Robert Roberts, ¹ David R. Cox, ³ David A. Hinds, ³ Len A. Pennacchio, ^{4,5} Anne Tybjaerg-Hansen, ⁶ Aaron R. Folsom, ⁷ Eric Boerwinkle, ⁸ Helen H. Hobbs, ^{2,9} Jonathan C. Cohen^{2,10}†

A Common Variant on Chromosome 9p21 Affects the Risk of Myocardial Infarction

Anna Helgadottir, ¹* Gudmar Thorleifsson, ¹* Andrei Manolescu, ¹* Solveig Gretarsdottir, ¹ Thorarinn Blondal, ¹ Aslaug Jonasdottir, ¹ Adalbjorg Jonasdottir, ¹ Asgeir Sigurdsson, ¹ Adam Baker, ¹ Arnar Palsson, ¹ Gisli Masson, ¹ Daniel F. Gudbjartsson, ¹ Kristinn P. Magnusson, ¹ Karl Andersen, ² Allan I. Levey, ³ Valgerdur M. Backman, ¹ Sigurborg Matthiasdottir, ¹ Thorbjorg Jonsdottir, ¹ Stefan Palsson, ¹ Helga Einarsdottir, ¹ Steinunn Gunnarsdottir, ¹ Arnaldur Gyffason, ¹ Viola Vaccarino, ³ W. Craig Hooper, ³ Muredach P. Reilly, ⁴ Christopher B. Granger, ⁵ Harland Austin, ³ Daniel J. Rader, ⁴ Svati H. Shah, ⁵ Arshed A. Quyyumi, ³ Jeffrey R. Gulcher, ¹ Gudmundur Thorgeirsson, ² Unnur Thorsteinsdottir, ¹

The NEW ENGLAND JOURNAL of MEDICINE

Genomewide Association Analysis of Coronary Artery Disease

Nilesh J. Samani, F.Med.Sci, Jeanette Erdmann, Ph. D., Alistair S. Hall, F.R.C.P., Christian Hengstenberg, M.D., Massimo Mangino, Ph.D., Bjoern Mayer, M.D., Richard J. Dixon, Ph.D., Thomas Meitinger, M.D., Peter Braund, M.S.c., H.-Erich Wichmann, M.D., Jennifer H. Barrett, Ph.D., Inke R. König, Ph.D., Suzanne E. Stevens, M.Sc., Sille Szymczak, M.S.c., David-Alexandre Tregouet, Ph.D., Mark M. Iles, Ph.D., Friedrich Pahlke, M.S.c., Helen Pollard, M.S.c., Wolfgang Lieb, M.D., Francois Cambien, M.D., Marcus Fischer, M.D., Willem Ouwehand, F.R.C.Path., Stefan Blankenberg, M.D., Anthony J. Balmforth, Ph.D., Andrea Baessler, M.D., Stephen G. Ball, F.R.C.P., Tim M. Strom, M.D., Ingrid Brenne, M.Sc., Christian Gieger, Ph.D., Panos Deloukas, Ph.D., Martin D. Tobin, M.F.P.H.M., Andreas Ziegler, Ph.D., John R. Thompson, Ph.D., and Heribert Schunkert, M.D., forthe WTCCC and the Cardiogenics Consortium* Vol 447 | 7 June 2007 | doi:10.1038/nature05911

nature

Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls

The Wellcome Trust Case Control Consortium*

genetics

Background

Genome-wide association of early-onset myocardial infarction with single nucleotide polymorphisms and copy number variants

Myocardial Infarction Genetics Consortium*

HaemGen consortium

Several more loci were identified in 2009 A genome-wide meta-analysis identifies 22 loci associated with eight hematological parameters in the

Nicole Soranzo^{1,2,45*}, Tim D Spector^{2,45}, Massimo Mangino^{2,45}, Brigitte Kühnel³, Augusto Rendon⁴, Alexander Teumer⁵, Christina Willenborg^{6,7}, Benjamin Wright⁸, Li Chen⁹, Mingyao Li¹⁰, Perttu Salo^{11,12}, Benjamin F Voight^{13,14}, Philippa Burns⁴, Roman A Laskowski¹⁵, Yali Xue¹, Stephan Menzel¹⁶, David Altshuler^{13,14,17–19}, John R Bradley²⁰, Suzannah Bumpstead¹, Mary-Susan Burnett²¹, Joseph Devaney²¹, Angela Döring³, Roberto Elosua²², Stephen E Epstein²¹, Wendy Erber²³, Mario Falchi^{2,24}, Stephen F Garner⁴, Mohammed J R Ghori¹, Alison H Goodall²⁵, Rhian Gwilliam¹, Hakon H Hakonarson²⁶, Alistair S Hall²⁷, Naomi Hammond¹, Christian Hengstenberg²⁸, Thomas Illig³, Inke R König⁶, Christopher W Knouff²⁹, Ruth McPherson⁹, Olle Melander³⁰, Vincent Mooser²⁹, Matthias Nauck³¹, Markku S Nieminen³², Christopher J O'Donnell^{18,33}, Leena Peltonen^{11,12}, Simon C Potter¹, Holger Prokisch^{34,35}, Daniel J Rader^{36,37}, Catherine M Rice¹, Robert Roberts⁹, Veikko Salomaa^{11,12}, Jennifer Sambrook⁴, Stefan Schreiber³⁸, Heribert Schunkert⁷, Stephen M Schwartz^{39,40}, Jovana Serbanovic-Canic⁴, Juha Sinisalo³², David S Siscovick^{39,40}, Klaus Stark²⁸, Ida Surakka¹², Jonathan Stephens⁴, John R Thompson⁸, Uwe Völker⁵, Henry Völzke⁴¹, Nicholas A Watkins⁴, George A Wells⁹, H-Erich Wichmann^{3,42}, David A Van Heel⁴³, Chris Tyler-Smith¹, Swee Lay Thein¹⁶, Sekar Kathiresan^{18,33}, Markus Perola^{11,12}, Muredach P Reilly^{36,37}, Alexandre F R Stewart⁹, Jeanette Erdmann⁷, Nilesh J Samani²⁵, Christa Meisinger³, Andreas Greinacher⁴⁴, Panos Deloukas^{1,45}, Willem H Ouwehand^{1,4,45} & Christian Gieger^{3,45}

Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction

Daniel F Gudbjartsson^{*1}, Unnur S Bjornsdottir^{1,2}, Eva Halapi¹, Anna Helgadottir¹, Patrick Sulem¹, Gudrun M Jonsdottir¹, Gudmar Thorleifsson¹, Hafdis Helgadottir¹, Valgerdur Steinthorsdottir¹, Hreinn Stefansson¹, Carolyn Williams^{3–5}, Jennie Hui^{6,7}, John Beilby^{6,8}, Nicole M Warrington⁹, Alan James^{10,11}, Lyle J Palmer⁹, Gerard H Koppelman¹², Andrea Heinzmann¹³, Marcus Krueger¹³, H Marike Boezen¹⁴, Amanda Wheatley¹⁵, Janine Altmuller¹⁶, Hyoung Doo Shin^{17,18}, Soo-Taek Uh¹⁹, Hyun Sub Cheong¹⁹, Brynja Jonsdottir²⁰, David Gislason²⁰, Choon-Sik Park²¹, Linda M Rasmussen²², Celeste Porsbjerg²², Jakob W Hansen²², Vibeke Backer²², Thomas Werge²³, Christer Janson²⁴, Ulla-Britt Jönsson²⁴, Maggie C Y Ng²⁵, Juliana Chan²⁵, Wing Yee So²⁵, Ronald Ma²⁵, Svati H Shah²⁶, Christopher B Granger²⁶, Arshed A Quyyumi²⁷, Allan I Levey²⁷, Viola Vaccarino²⁷, Muredach P Reilly²⁸, Daniel J Rader²⁸, Michael J A Williams²⁹, Andre M van Rij²⁹, Gregory T Jones²⁹, Elisabetta Trabetti³⁰, Giovanni Malerba³⁰, Pier Franco Pignatti³⁰, Attlio Bone³¹, Lydia Pescollerungg³², Domenico Girelli³³, Oliviero Olivieri³³, Nicola Martinelli³³, Bjorn R Ludviksson^{2,20}, Dora Ludviksdottir²⁰, Gudmundur I Eyjolfsson³⁴, David Arnar^{2,20}, Gudmundur Thorgeirsson^{2,20}, Klaus Deichmann¹³, Philip J Thompson^{3–5}, Matthias Wjst^{35,36}, Ian P Hall¹⁶, Dirkje S Postma³⁷, Thorarinn Gislason^{2,20}, Jeffrey Gulcher¹, Augustine Kong¹, Ingileif Jonsdottir^{1,2,20}, Unnur Thorsteinsdottir^{1,2} & Kari Stefansson^{1,2}

New susceptibility locus for coronary artery disease on chromosome 3q22.3

Jeanette Erdmann¹, Anika Großhennig^{1,2}, Peter S Braund³, Inke R König², Christian Hengstenberg⁴, Alistair S Hall⁵, Patrick Linsel-Nitschke¹, Sekar Kathiresan⁶, Ben Wright⁷, David-Alexandre Trégouët8, Francois Cambien8, Petra Bruse1, Zouhair Aherrahrou¹, Arnika K Wagner¹, Klaus Stark⁴, Stephen M Schwartz9, Veikko Salomaa10, Roberto Elosua11, Olle Melander¹², Benjamin F Voight¹³, Christopher J O'Donnell¹⁴, Leena Peltonen¹⁵, David S Siscovick⁹, David Altshuler¹⁶, Piera Angelica Merlini¹⁷, Flora Peyvandi¹⁸, Luisa Bernardinelli^{19,20}, Diego Ardissino²¹, Arne Schillert², Stefan Blankenberg22, Tanja Zeller22, Philipp Wild22, Daniel F Schwarz², Laurence Tiret⁸, Claire Perret⁸, Stefan Schreiber23, Nour Eddine El Mokhtari23, Arne Schäfer23, Winfried März²⁴⁻²⁶, Wilfried Renner²⁵, Peter Bugert²⁷, Harald Klüter²⁷, Jürgen Schrezenmeir²⁸, Diana Rubin²⁸, Stephen G Ball⁵, Anthony J Balmforth⁵, H-Erich Wichmann^{29,30}, Thomas Meitinger^{31,32}, Marcus Fischer⁴, Christa Meisinger²⁹, Jens Baumert29, Annette Peters29, Willem H Ouwehand33, Italian Atherosclerosis, Thrombosis, and Vascular Biology Working Group³⁴, Myocardial Infarction Genetics Consortium³⁴, Wellcome Trust Case Control Consortium34, Cardiogenics Consortium³⁴, Panos Deloukas¹⁵, John R Thompson⁷, Andreas Ziegler², Nilesh I Samani³ & Heribert Schunkert¹

Genome-wide haplotype association study identifies the *SLC22A3-LPAL2-LPA* gene cluster as a risk locus for coronary artery disease

David-Alexandre Trégouët¹, Inke R König², Jeanette Erdmann³, Alexandru Munteanu¹, Peter S Braund⁴, Alistair S Hall⁵, Anika Großhennig^{2,3}, Patrick Linsel-Nitschke³, Claire Perret¹, Maylis DeSuremain¹, Thomas Meitinger⁶, Ben J Wright⁷, Michael Preuss², Anthony J Balmforth⁵, Stephen G Ball⁵, Christa Meisinger⁶, Cécile Germain⁸, Alun Evans⁹, Dominique Arveiler¹⁰, Gérald Luc¹¹, Jean-Bernard Ruidavets¹², Caroline Morrison¹³, Pim van der Harst⁴, Stefan Schreiber¹⁴, Katharina Neureuther¹⁵, Arne Schäfer¹⁴, Peter Bugert¹⁶, Nour E El Mokhtari¹⁴, Jürgen Schrezenmeir¹⁷, Klaus Stark¹⁵, Diana Rubin¹⁷, H-Erich Wichmann⁶, Christian Hengstenberg¹⁵, Willem Ouwehand¹⁸, Wellcome Trust Case Control Consortium¹⁹ Cardiogenics Consortium¹⁹, Andreas Ziegler², Laurence Tiret¹, John R Thompson⁷, Francois Cambien¹, Heribert Schunkert³ & Nilesh J Samani⁴

- Several studies have commented on the ability of 9p21 to add to risk prediction in prospective cohorts
 - Talmud 2008
 - N=2742 men, n=270 events
 - AUC 0.62 to 0.64 p NS, LR p=0.01
 - Brautbar 2009
 - N=9998 whites, n=1349 events
 - AUC 0.782 to 0.786 CI (0.001, 0.007)
 - Paynter 2009
 - \circ N=22,129 white women, n=615 events
 - AUC 0.807 to 0.809 NS

- One study commented on more than just 9p21's ability to predict CAD
 - Paynter 2010
 - 12 CAD/Stroke SNPs and 101 SNP GRS
 - Neither significant

Association Between a Literature-Based Genetic Risk Score and Cardiovascular Events in Women

Nina P. Paynter, PhD
Daniel I. Chasman, PhD
Guillaume Paré, MD, MS
Julie E. Buring, ScD
Nancy R. Cook, ScD
Joseph P. Miletich, MD, PhD
Paul M Ridker, MD, MPH

 Also, some studies had success with alternative methodologies

From Disease Association to Risk Assessment: An Optimistic View from Genome-Wide Association Studies on Type 1 Diabetes

Zhi Wei^{1®}, Kai Wang^{2®}, Hui-Qi Qu³, Haitao Zhang², Jonathan Bradfield², Cecilia Kim², Edward Frackleton², Cuiping Hou², Joseph T. Glessner², Rosetta Chiavacci², Charles Stanley⁴, Dimitri Monos⁵, Struan F. A. Grant^{2,6}, Constantin Polychronakos³, Hakon Hakonarson^{2,6}*

Objectives

Using GWAS SNPs for CAD/MI
1) See if newer SNPs add to 9p21
2) Test out a few different methods

Methods

- Identify SNPs from literature
- Get these SNPs, or proxies, in our data ready
- Test to see whether newer SNPs add to 9p21
 - If true, check to see if this holds true when known risk factors are used
- Test to see whether different prediction algorithms affect results

Results 1 – Identifying SNPs from Literature (1/4)

- Resource used National Human Genome Research Institute catalogue of GWA studies
- o http://www.genome.gov/26525384

Published Genome-Wide Associations through 6/2010, 904 published GWA at p<5x10⁻⁸ for 165 traits

NHGRI GWA Catalog www.genome.gov/GWAStudies

Results 1 – Identifying SNPs from Literature (3/4)

Inclusion criteria

- GWAS study
 - Either primary CAD/MI
 - Or secondary analysis of CAD/MI, where primary analysis was related trait
 - Lipid traits, hypertension, etc
- Reported p-value <=5e-7

Results 1 – Identifying SNPs from Literature (4/4)

Table 2. Details of Previously Identified SNPs

Studies	Locus	Physical Location, Mb	Original SNP	Genes in Region
5	1p32	55.27	Rs11206510	PCSK9
2, 5	1p13	109.62	Rs646776	CELSR2/PSRC1/SORT1
5	1q41	220.87	Rs17465637	MIA3
5	2q33	203.45	Rs6725887	WDR12
7	3q22	139.60	Rs9818870	MRAS
5	6p24	13.04	Rs12526453	PHACTR1
8	6q26-27	160.88	Rs3798220	SLC22A3/LPAL2/LPA
2–5	9p21	22.09	Rs4977574	CDKN2A/CDKN2B
2, 5	10q11	44.10	Rs1746048	CXCL12
6, 9	12q24	111.36	Rs11066301	SH2B3/ATXN2/PTPN11
7	12q24	119.92	Rs2259816	HNF1A/C12orf43
5	19p13	11.02	Rs1122608	LDLR
5	21q22	34.52	Rs9982601	SLC5A3/MRPS6/KCNE2

Results 2 – Prepare data for analysis (1/2)

Ottawa Heart Genomics Study

- Cases M<55, F<65 (n=3323)</p>
- MI, CABG, PCI, Stenosis >=50%
- Controls M>65 F>70 (n=2319)
- Asymptomatic or none of the above
- Wellcome Trust Case Control Consortium
 - Cases M+F<66 (n=1926)</p>
 - MI, CABG, PCI
 - Controls population randoms no phenotypes (n=2938)

Results 2 – Prepare data for analysis (2/2)

Table 2.	Details of F	Previously Identified SNF	Ps					
Studies	Locus	Physical Location, Mb	Using SNP	SNP Type	Original SNP	Genes in Region	OHGS, OR (95% CI)	
5	1p32	55.27	rs11206510	G	Rs11206510	PCSK9	1.00 (0.91,1.10)*	
2, 5	1p13	109.62	rs646776	I	Rs646776	CELSR2/PSRC1/SORT1	1.18 (1.08,1.30)	
5	1q41	220.87	rs17465637	G	Rs17465637	MIA3	1.15 (1.06,1.25)	
5	2q33	203.45	rs6725887	G	Rs6725887	WDR12	1.28 (1.14,1.43)	
7	3q22	139.60	rs9818870	G	Rs9818870	MRAS	1.13 (1.02,1.25)	
5	6p24	13.04	rs12526453	G	Rs12526453	PHACTR1	1.11 (1.03,1.21)	
8	6q26-27	160.88	CCTC haplo	Н	Rs3798220	SLC22A3/LPAL2/LPA	1.79 (1.38,2.31)	
2–5	9p21	22.09	rs4977574	G	Rs4977574	CDKN2A/CDKN2B	1.46 (1.35,1.57)	
2, 5	10q11	44.10	rs1746049	G-T	Rs1746048	CXCL12	1.17 (1.04,1.31)	
6, 9	12q24	111.36	rs11066301	I	Rs11066301	SH2B3/ATXN2/PTPN11	1.17 (1.08,1.26)	
7	12q24	119.92	rs2259816	G	Rs2259816	HNF1A/C12orf43	1.13 (1.04,1.22)	
5	19p13	11.02	rs1122608	G	Rs1122608	LDLR	1.20 (1.09,1.31)	
5	21q22	34.52	rs9978407	G-T	Rs9982601	SLC5A3/MRPS6/KCNE2	1.25 (1.12,1.40)	

Original SNP refers to the SNP as identified through the relevant GWAS; using refers to the SNP being used in our analysis. SNP type refers to whether the SNP being used was the original genotype SNP (G), a tag SNP of the genotype SNP (G-T), an imputed SNP (I), or a haplotype (H). Odds ratios (ORs) and 95% confidence intervals (Cls) are given for the risk allele for a logistic regression model containing all 13 SNPs. *rs1120650 was removed after the model-fitting procedure.

Results 3 – Test whether new SNPs add to 9p21 (1/3)

 Table 3.
 Results for Models Trained Using Sets of SNPs

		OHGS			WTCCC			
	LR	AC	SVM	LR	AC	SVM		
9p21.3/rs4977574	0.555	0.555	0.555	0.556	0.556	0.556		
All	0.608	0.599	0.581	0.602	0.593	0.579		
D-3 50	└── ∩_1	1		₩ P=?	3.50	e-		

Results 3 – Test whether new SNPs add to 9p21 (2/3)

 Subset of OHGS with baseline (no drugs) lipids (n=1388 cases, n=2038 controls)
 Table 1. Clinical Characteristics of Ottawa Heart Genomics Study

Variables

- Smoke current (Y/N)
- Hypertension (Y/N)
- Total Cholesterol
- HDL
- Sex

	Cases	Control Subjects
No.	3323	2319
Age*	48.6±7.2	75.0±5.2
Men, %	75.9	51.7
Body mass index	29.0±5.2	26.2±4.1
Smoke current, %	21.3	2.5
Hypertension, %	58.9	39.1
Cholesterol, mmol/L†	5.92±1.2	5.67±1.0
TG, mmol/L†	2.07 ± 1.1	1.33±0.7
LDL-C, mmol/L†	3.84 ± 1.1	$3.59{\pm}0.9$
HDL-C, mmol/L†	$1.16 {\pm} 0.4$	$1.48 {\pm} 0.4$

TG indicates triglyceride; LDL, low-density lipoprotein; and HDL, high-density lipoprotein.

Values reported are mean ± 1 SD. All measures are significantly different (*P*<0.001) between cases and control subjects as measured by *t* tests for the continuous variables and χ^2 tests for the binary traits.

*Age refers to age at diagnosis (cases) and age at consent (control subjects).

†All 4 lipid measures were available for 1248 cases and 2016 control subjects at baseline.

Results 3 – Test whether new SNPs add to 9p21 (3/3)

1) TRFs (AUC=0.8013)
2) TRFs + 9p21 (AUC=0.8044)
3) TRFs + 12 (AUC=0.8097)
p-value 1 vs 2 = 0.097
p-value 2 vs 3 = 0.037
p-value 1 vs 3 = 0.0073

Results 4 – Test methods

Table 3. Results for Models Trained Using Sets of SNPs

	OHGS				WTCCC	
	LR	AC	SVM	LR	AC	SVM
9p21.3/rs4977574	0.555	0.555	0.555	0.556	0.556	0.556
All	0.608	0.599	0.581	0.602	0.593	0.579

Values are AUCs for both LR and SVM trained on either 9p21.3 alone or using 12 SNPs.

OHGS

LR vs AC 0.016

LR vs SVM 3.79e-6

Discussion

- 12 SNPs did roughly twice as well as
 1
- Somewhat expected, but good to see given uncertainty in previous prospective work

Discussion

- Logistic regression outperformed allele counting, but only very marginally
 - Somewhat surprising result is seen consistently in literature
- SVM did not do very well
 - Only one SNP per locus takes away ability of SVM to detect multiple signals from the same locus
 - Might have allowed too much flexibility in classifier

Discussion

Other notable future publications

- Ribatti et al, in press
- ~30,000 Scandanavians prospective cohort
- 13 SNP allele counting GRS, should be same 13 loci as identified
- ~1.7 Hazard ratio for top quintile of score versus lowest quintile (believed to be adjusted for risk factors)
- ~1.7 HR for LDL, other common factors

Conclusion

- 1000\$ genome = 5 to 10 years away
- Better methods are needed to handle sequence data

Thanks

- Colleagues at Cardiovascular Research Methods Centre
 - Dr. George Wells
 - Li Chen
 - Kathryn Williams
- John and Jennifer Ruddy Canadian Cardiovascular Genetics Centre
- Wellcome Trust Case Control Consortium
- R, HapMap, 1kG, Craig Venter, Pubmed, Eigensoft, etc.

Any questions?