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Rationale

 This group
 CAnadiaN Network and Centre for Trials 

Internationally (CANNeCTIN)
 This seminar series

 Biostatistics Methodology Videoconference
 Advanced Issues in Clinical Trials Methodology 

 This presentation
 Statistical genetics?
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Why?



http://clinicaltrials.gov/ct2/show/NCT01184300?term=ottawa+jason+roberts&rank=1
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Refs:
http://www.plosbiology.org/article/slideshow.action?uri=info:doi/10.1371/journal.pbio.0050266

http://en.wikipedia.org/wiki/File:Biological_cell.svg

http://en.wikipedia.org/wiki/File:DNA_chemical_structure.svg

http://en.wikipedia.org/wiki/File:Epithelial-cells.jpg

People have cells
Cells contain DNA

http://en.wikipedia.org/wiki/File:DNA_chemical_structure.svg
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DNA is important
DNA is susceptible to mutations

http://en.wikipedia.org/wiki/File:Proteinsynthesis.png

And…

http://en.wikipedia.org/wiki/File:Chromosomes_mutations-en.svg
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The Single Nucleotide Polymorphism 
(SNP). Example rs1333049

http://genome.ucsc.edu/cgi-bin/hgc?
hgsid=170305062&g=htcGetDna2&table=gwasCatalog&i=rs1333049&o=22125502&l=22125502&r=2
2125503&getDnaPos=chr9%3A22%2C125%2C503-
22%2C125%2C503&hgSeq.cdsExon=1&hgSeq.padding5=50&hgSeq.padding3=50&hgSeq.casing=upp
er&boolshad.hgSeq.maskRepeats=0&hgSeq.repMasking=lower&boolshad.hgSeq.revComp=0&submit=
get+DNA

>hg19_gwasCatalog_rs1333049 
range=chr9:22125453-22125553 
5'pad=50 3'pad=50 strand=+ 
repeatMasking=none 
TGGTCACTACCCTACTGTCATTCCTCA
TACTAACCATATGATCAACAGTT[G/C
]AAAAGCAGCCACTCGCAGAGGTAAG
CAAGATATATGGTAAATACTGTGT T 
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http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=rs1333049
http://www.plosbiology.org/article/slideshow.action?uri=info:doi/10.1371/journal.pbio.0050266

5’ ..AGTTGAAAA.. 3’
3’ ..TCAACTTTTT.. 5’

5’ ..AGTTCAAAA.. 3’
3’ ..TCAAGTTTT.. 5’

rs1333049
     GC = 1

http://www.ncbi.nlm.nih.gov/SNP/snp_ref.cgi?type=rs&rs=rs1333049
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DNA microarrays

http://en.wikipedia.org/wiki/File:Affymetrix-microarray.jpg

Ex: rs1333049

Person        A  B  CV  D  E  F
Rs1333049  0  1  1    2   2  1  
Rs123456    0  0  0    1   1  2 
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Lots and lots of SNPs

2010 – About 10M SNPs
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Genome Wide Association Study
(GWAS)

 Choose phenotype and collect 
subjects – ex: CAD
 Either continuous, ie HDL, LDL, etc, or 

binary, ie CAD vs control
 Get DNA and run whole genome 

microarray
 Search for SNPs which are 

“statistically significantly” different 
with respect to phenotype
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What’s actually done in a GWAS in 
triangle form

CEL files Phenotypes

QC

Genotypes

Cleaner Genotypes

Raw

GCA
PCA

Imputed Data
Imputation

Summarization
Manhattan, 
QQ plots, p-
values, etc

People

DNA Chips
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Typical Results
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Ethnicity

 This section
 Explain mathematical basis of PCA 

briefly
 Show how we use it to identify genetic 

outliers
 Explain ancestry informative SNPs
 Show how to find them
 Show what they look like in our data
 Explain how they may be used



18
Novembre et al 2008, Nature, Genes mirror geography within Europe
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WTCCC 2007 Nature 7 June 2007 p661
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http://commons.wikimedia.org/wiki/File:Blank_map_europe.png
Colours added post-acquisition

λ =1.2

λ =1.1

http://commons.wikimedia.org/wiki/File:Blank_map_europe.png
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Ancestry Informative SNPs

 A lot of SNPs are useless
 Low frequency, same in different 

populations, etc.
 How many SNPs do we really need 

to identify populations?
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PCA using Ancestry Informative SNPs

 “We … achieve perfect intercontinental 
differentiation with 14 PCA-correlated 
SNPs” – Paschou et al. PLoS Genetics 
2007 e160

 “Only 150-200 PCAIMs (PCA-informative 
markers) suffice to accurately predict fine 
structure in European Americans” – 
Paschou et al. PLoS Genetics 2008 
e1000114

 Price et al. show that 100 SNPs explains 
the ancestry of non-Ashkenazi Jewish 
European American. PLoS Genetics e236
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How to select ancestry informative 
PCA’s?

 Take dataset
 Remove outliers (ie non-

Caucasians)
 Perform PCA again
 Regress first few PC’s against SNPs
 Select SNPs which are of the 

highest technicaly quality which 
best explain PC’s
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rs2322659
LCT
CEU 0.81
TSI 0.386

rs12527415
MHC
CEU 0.252
TSI 0.447



28LCT gene rs2322659
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 Add big slide

200 SNPs

150,000 
SNPs

R2 ~=0.6
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How to use this data?

 Ensure homogenous population
 Use as a covariate in future 

prediction studies
 Very interesting – will this matter?
 Determine ethnic susceptibility

 As a correction in GWAS where 
sharing subject level whole genome 
data is not possible
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Prediction

 This section
 Describe a paper recently published by 

us
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Background

 Several CAD GWAS identified 9p21 
in 2007
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Background

 Several more loci were identified in 
2009
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Background
 Several studies have commented on the 

ability of 9p21 to add to risk prediction in 
prospective cohorts
 Talmud 2008 

 N=2742 men, n=270 events
 AUC 0.62 to 0.64 p NS, LR p=0.01

 Brautbar 2009
 N=9998 whites, n=1349 events
 AUC 0.782 to 0.786 CI (0.001, 0.007) 

 Paynter 2009
 N=22,129 white women, n=615 events
 AUC 0.807 to 0.809 NS
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Background

 One study commented on more 
than just 9p21’s ability to predict 
CAD
 Paynter 2010

 12 CAD/Stroke SNPs and 101 SNP GRS
 Neither significant
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Background

 Also, some studies had success with 
alternative methodologies
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Objectives

 Using GWAS SNPs for CAD/MI
 1) See if newer SNPs add to 9p21
 2) Test out a few different methods
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Methods

 Identify SNPs from literature
 Get these SNPs, or proxies, in our 

data ready
 Test to see whether newer SNPs 

add to 9p21
 If true, check to see if this holds true 

when known risk factors are used
 Test to see whether different 

prediction algorithms affect results
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Results 1 – Identifying SNPs from 
Literature (1/4)

 Resource used – National Human 
Genome Research Institute 
catalogue of GWA studies

 http://www.genome.gov/26525384

http://www.genome.gov/26525384
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Published Genome-Wide Associations through 6/2010, 
904 published GWA at p<5x10-8 for 165 traits

NHGRI GWA Catalog
www.genome.gov/GWAStudies
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Results 1 – Identifying SNPs from 
Literature (3/4)

 Inclusion criteria
 GWAS study

 Either primary CAD/MI
 Or secondary analysis of CAD/MI, where 

primary analysis was related trait
 Lipid traits, hypertension, etc

 Reported p-value <=5e-7
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Results 1 – Identifying SNPs from 
Literature (4/4)
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Results 2 – Prepare data for analysis 
(1/2)

 Ottawa Heart Genomics Study
 Cases M<55, F<65 (n=3323)
 MI, CABG, PCI, Stenosis >=50%
 Controls M>65 F>70 (n=2319)
 Asymptomatic or none of the above

 Wellcome Trust Case Control Consortium
 Cases M+F<66 (n=1926)
 MI, CABG, PCI
 Controls population randoms no phenotypes 

(n=2938)
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Results 2 – Prepare data for analysis 
(2/2)
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Results 3 – Test whether new SNPs 
add to 9p21 (1/3)

P=3.59e-14 P=3.50e-11
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Results 3 – Test whether new SNPs 
add to 9p21 (2/3)

 Subset of OHGS with baseline (no 
drugs) lipids (n=1388 cases, 
n=2038 controls)

 Variables
 Smoke current (Y/N)
 Hypertension (Y/N)
 Total Cholesterol
 HDL
 Sex   
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Results 3 – Test whether new SNPs 
add to 9p21 (3/3)

 1) TRFs (AUC=0.8013)
 2) TRFs + 9p21 (AUC=0.8044)
 3) TRFs + 12 (AUC=0.8097)
 p-value 1 vs 2 = 0.097
 p-value 2 vs 3 = 0.037
 p-value 1 vs 3 = 0.0073
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Results 4 – Test methods

                LR vs AC
OHGS        0.016

LR vs SVM
3.79e-6
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Discussion

 12 SNPs did roughly twice as well as 
1

 Somewhat expected, but good to 
see given uncertainty in previous 
prospective work
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Discussion

 Logistic regression outperformed allele 
counting, but only very marginally
 Somewhat surprising result is seen 

consistently in literature
 SVM did not do very well

 Only one SNP per locus takes away ability of 
SVM to detect multiple signals from the same 
locus

 Might have allowed too much flexibility in 
classifier
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Discussion

 Other notable future publications
 Ribatti et al, in press
 ~30,000 Scandanavians prospective 

cohort
 13 SNP allele counting GRS, should be 

same 13 loci as identified
 ~1.7 Hazard ratio for top quintile of 

score versus lowest quintile (believed 
to be adjusted for risk factors)

 ~1.7 HR for LDL, other common factors
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Conclusion

 1000$ genome = 5 to 10 years 
away

 Better methods are needed to 
handle sequence data
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Thanks

 Colleagues at Cardiovascular Research 
Methods Centre
 Dr. George Wells
 Li Chen
 Kathryn Williams

 John and Jennifer Ruddy Canadian 
Cardiovascular Genetics Centre

 Wellcome Trust Case Control Consortium
 R, HapMap, 1kG, Craig Venter, Pubmed, 

Eigensoft, etc.
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Any questions?
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